The limitations of the conventional master-slavesplitting(MSS)method,which is commonly applied to power flow and optimal power flow in integrated transmission and distribution(I-T&D)networks,are first analyzed.Con...The limitations of the conventional master-slavesplitting(MSS)method,which is commonly applied to power flow and optimal power flow in integrated transmission and distribution(I-T&D)networks,are first analyzed.Considering that the MSS method suffers from a slow convergence rate or even divergence under some circumstances,a least-squares-based iterative(LSI)method is proposed.Compared with the MSS method,the LSI method modifies the iterative variables in each iteration by solving a least-squares problem with the information in previous iterations.A practical implementation and a parameter tuning strategy for the LSI method are discussed.Furthermore,a LSI-PF method is proposed to solve I-T&D power flow and a LSIheterogeneous decomposition(LSI-HGD)method is proposed to solve optimal power flow.Numerical experiments demonstrate that the proposed LSI-PF and LSI-HGD methods can achieve the same accuracy as the benchmark methods.Meanwhile,these LSI methods,with appropriate settings,significantly enhance the convergence and efficiency of conventional methods.Also,in some cases,where conventional methods diverge,these LSI methods can still converge.展开更多
To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cas...To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cases demonstrate thatan I-ORA is necessary because it provides accurate handlingof the coupling between transmission and distribution networks,accurate analysis of power supply mode (PSM) changes ofimportant users and helps to improve security and stability ofpower grid operations. Two key technical requirements in theI-ORA algorithm are realized, i.e., integrated topology analysisand integrated power flow calculation. Under a certain contingency, integrated topology analysis is used to assess the risksof substation power cuts, network split and PSM changes ofimportant users, while the integrated power flow calculation,based on the self-adaptive Levenburg-Marquard method andNewton method, can be implemented to assess risks of heavyload/overload and voltage deviation. In addition, the graphicsprocessing unit is used to parallelly process some computationintensive steps. Numerical experiments show that the proposedI-ORA algorithm can realize accurate assessment for the entireI-T&D. In addition, the efficiency and convergence are satisfying,indicating the proposed I-ORA algorithm can significantly benefitreal practice in the coordination operation of I-T&D in the future.展开更多
After describing the general situation of China Southern Power Grid (CSG), this article expounds the necessity for CSG to carry out the program of smart grid, and points out the favorable conditions and the key fields...After describing the general situation of China Southern Power Grid (CSG), this article expounds the necessity for CSG to carry out the program of smart grid, and points out the favorable conditions and the key fields to develop smart grid. It also puts forward near-term emphases, and gives relevant suggestions.展开更多
As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are n...As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are not suitable to be studied separately.This paper presents a distributed continuation power flow method for VSA of global transmission and distribution grid.Two different parameterization schemes are adopted to guarantee the coherence of load growth in transmission and distribution grids.In the correction step,the boundary bus voltage,load parameter and equivalent power are communicated between the transmission and distribution control centers to realize the distributed computation of load margin.The optimal multiplier technique is used to improve the convergence of the proposed method.The three-phase unbalanced characteristic of distribution networks and the reactive capability limits of DGs are considered.Simulation results on two integrated transmission and distribution test systems show that the proposed method is effective.展开更多
随着能源需求的不断增长和电力系统规模的扩大,配电网输电方向的变化成为影响系统可靠性的重要因素之一。通过深入分析输电方向变化的机理,揭示其基本原理、与电网稳定性的关系以及对系统频率、电压等参数的影响机理。在此基础上,分析...随着能源需求的不断增长和电力系统规模的扩大,配电网输电方向的变化成为影响系统可靠性的重要因素之一。通过深入分析输电方向变化的机理,揭示其基本原理、与电网稳定性的关系以及对系统频率、电压等参数的影响机理。在此基础上,分析系统可靠性的影响,包括可靠性评估指标与方法、输电方向变化对系统可用性的影响以及对系统平均故障间隔时间(Mean Time Between Failure,MTBF)的影响。针对发现的问题,提出一系列优化策略与措施,旨在提高配电网的可靠性和稳定性。展开更多
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
基金supported by the National Natural Science Foundation of China(52077193).
文摘The limitations of the conventional master-slavesplitting(MSS)method,which is commonly applied to power flow and optimal power flow in integrated transmission and distribution(I-T&D)networks,are first analyzed.Considering that the MSS method suffers from a slow convergence rate or even divergence under some circumstances,a least-squares-based iterative(LSI)method is proposed.Compared with the MSS method,the LSI method modifies the iterative variables in each iteration by solving a least-squares problem with the information in previous iterations.A practical implementation and a parameter tuning strategy for the LSI method are discussed.Furthermore,a LSI-PF method is proposed to solve I-T&D power flow and a LSIheterogeneous decomposition(LSI-HGD)method is proposed to solve optimal power flow.Numerical experiments demonstrate that the proposed LSI-PF and LSI-HGD methods can achieve the same accuracy as the benchmark methods.Meanwhile,these LSI methods,with appropriate settings,significantly enhance the convergence and efficiency of conventional methods.Also,in some cases,where conventional methods diverge,these LSI methods can still converge.
基金the State Grid Zhejiang Electric Power Co.,Ltd.(Science and Technology Project under Grant 5211JH180081:Research on security evaluation and control technology of smart platform based on dispatch cloud.)。
文摘To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cases demonstrate thatan I-ORA is necessary because it provides accurate handlingof the coupling between transmission and distribution networks,accurate analysis of power supply mode (PSM) changes ofimportant users and helps to improve security and stability ofpower grid operations. Two key technical requirements in theI-ORA algorithm are realized, i.e., integrated topology analysisand integrated power flow calculation. Under a certain contingency, integrated topology analysis is used to assess the risksof substation power cuts, network split and PSM changes ofimportant users, while the integrated power flow calculation,based on the self-adaptive Levenburg-Marquard method andNewton method, can be implemented to assess risks of heavyload/overload and voltage deviation. In addition, the graphicsprocessing unit is used to parallelly process some computationintensive steps. Numerical experiments show that the proposedI-ORA algorithm can realize accurate assessment for the entireI-T&D. In addition, the efficiency and convergence are satisfying,indicating the proposed I-ORA algorithm can significantly benefitreal practice in the coordination operation of I-T&D in the future.
文摘After describing the general situation of China Southern Power Grid (CSG), this article expounds the necessity for CSG to carry out the program of smart grid, and points out the favorable conditions and the key fields to develop smart grid. It also puts forward near-term emphases, and gives relevant suggestions.
基金This work is supported by National Natural Science Foundation of China(No.51077042,No.51577049)Special Foundation of The doctoral program of Higher Education(No.20120094110008).
文摘As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are not suitable to be studied separately.This paper presents a distributed continuation power flow method for VSA of global transmission and distribution grid.Two different parameterization schemes are adopted to guarantee the coherence of load growth in transmission and distribution grids.In the correction step,the boundary bus voltage,load parameter and equivalent power are communicated between the transmission and distribution control centers to realize the distributed computation of load margin.The optimal multiplier technique is used to improve the convergence of the proposed method.The three-phase unbalanced characteristic of distribution networks and the reactive capability limits of DGs are considered.Simulation results on two integrated transmission and distribution test systems show that the proposed method is effective.
文摘随着能源需求的不断增长和电力系统规模的扩大,配电网输电方向的变化成为影响系统可靠性的重要因素之一。通过深入分析输电方向变化的机理,揭示其基本原理、与电网稳定性的关系以及对系统频率、电压等参数的影响机理。在此基础上,分析系统可靠性的影响,包括可靠性评估指标与方法、输电方向变化对系统可用性的影响以及对系统平均故障间隔时间(Mean Time Between Failure,MTBF)的影响。针对发现的问题,提出一系列优化策略与措施,旨在提高配电网的可靠性和稳定性。
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.