High quality software requirement specification is crucial for a software development. Although much efforts and research works have been done to address the problem, the errors in user requirement are still prevent u...High quality software requirement specification is crucial for a software development. Although much efforts and research works have been done to address the problem, the errors in user requirement are still prevent us from developing high quality software. To address the problem, this paper proposes integrating graphical specification technique UML with formal specification technique to construct user requirement specification. We also present a prototype tool to perform the automatic translation from UML specification into Object-Z specification.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fu...The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
The purpose of this paper is to study the solution of the celebrated Whittaker equations by using analytical mechanics methods, including the Lagrange-Noether method, Hamilton-Poisson method and potential integral met...The purpose of this paper is to study the solution of the celebrated Whittaker equations by using analytical mechanics methods, including the Lagrange-Noether method, Hamilton-Poisson method and potential integral method.展开更多
Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that ...Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that the capability to capture dynamic loading was not explored. It was found that there were different quadrature equations to predict the next step displacement increment. A modified quadrature equation of this method was derived so that the equation to determine the next step displacement was numerically equivalent to the equation used in the constant AAM. It was verified that the original form of this method, in general, had a better capability to capture dynamic loadings than the constant AAM. This excellent property, in addition to computational efficiency, will help to make this method competitive with general secondorder accurate integration methods.展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysi...A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysisincludes that of elastic and large deformation based uponupdated Lagrangian including buckling check.The resultsshow that the direct integration methods give differentresults in different contact-impact cases.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
This paper presents the integration methods for vacco dynmmies equations of nonlinear nonholononic system,First.vacco dynamies equations are written in the canonical form and the field form.second the gradient methods...This paper presents the integration methods for vacco dynmmies equations of nonlinear nonholononic system,First.vacco dynamies equations are written in the canonical form and the field form.second the gradient methods the single-componentmethods and the field method are used to integrate the dynamics equations of the corresponding holonomic system respectively.And considering the restriction of nonholonomic construint to the initial conditions the solutions of Vacco dynamics cquations of nonlinear nonholonomic system are obtained.展开更多
Lithology of Triassic in southwestern Sichuan is consistent with the whole basin,and there is no discussion about stratum division,the difference is stratum denudation which is made by the uplifting of Luzhou uplift,e...Lithology of Triassic in southwestern Sichuan is consistent with the whole basin,and there is no discussion about stratum division,the difference is stratum denudation which is made by the uplifting of Luzhou uplift,especially展开更多
A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth...A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.展开更多
In this study,we develop and empirically test a valuation model for a commonly encountered option in office leases:a tenant’s option to renew at future market rent(a fair market value)with lease termination as the ma...In this study,we develop and empirically test a valuation model for a commonly encountered option in office leases:a tenant’s option to renew at future market rent(a fair market value)with lease termination as the maturity date.The model integrates decision analysis with real options analysis and market risk with private risks.“Option value”is defined as the private value of the option to either party pre-contract,while“option price”assumes a fair agreement between transacting parties and can be positive(rental premium paid)or negative(rental discount offered).Without manifest expectations,an analysis of a sample of office leases supports the model’s logic with price estimates in a practical range.The tenants’option price/value is shown to have a negative relationship with the original/renewal lease term;conversely,the landlords’option value is positively related to the original/renewal term.Comparative analyses show that transaction costs have a positive effect on tenants’option value and on prices,while vacancy costs and the vacancy period are both positively related to the landlords’option value and negatively related to price.Market rent is found to have a negative relationship with option price.Overall,this study provides a theoretical analysis and empirical tests of the value of a real option that allows option holders to renew/extend their contracts at a fair market value.展开更多
In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of...In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of n-dimensional SDEs under the excitation ofα-stable Lévy noise are obtained through the characteristic function of stochastic processes.Then,the short-time transition probability density func-tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski(CKS)equation and the characteristic function,and its correctness is demonstrated by proving that it satis-fies the governing equation of the solution of the SDE,which is also called the Fokker-Planck-Kolmogorov equation.Besides,illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method,and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.展开更多
In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework...In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework.Numerical tests to illustrate the theoretical findings are presented.展开更多
Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining ...Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).展开更多
The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff...The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.展开更多
文摘High quality software requirement specification is crucial for a software development. Although much efforts and research works have been done to address the problem, the errors in user requirement are still prevent us from developing high quality software. To address the problem, this paper proposes integrating graphical specification technique UML with formal specification technique to construct user requirement specification. We also present a prototype tool to perform the automatic translation from UML specification into Object-Z specification.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
文摘The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
基金Project supported by the National Natural Science Foundation (Grant No 10572021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘The purpose of this paper is to study the solution of the celebrated Whittaker equations by using analytical mechanics methods, including the Lagrange-Noether method, Hamilton-Poisson method and potential integral method.
基金Science Council (NSC),Chinese Taipei Under Grant No.NSC-96-2221-E-027-030
文摘Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that the capability to capture dynamic loading was not explored. It was found that there were different quadrature equations to predict the next step displacement increment. A modified quadrature equation of this method was derived so that the equation to determine the next step displacement was numerically equivalent to the equation used in the constant AAM. It was verified that the original form of this method, in general, had a better capability to capture dynamic loadings than the constant AAM. This excellent property, in addition to computational efficiency, will help to make this method competitive with general secondorder accurate integration methods.
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
文摘A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysisincludes that of elastic and large deformation based uponupdated Lagrangian including buckling check.The resultsshow that the direct integration methods give differentresults in different contact-impact cases.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.
文摘This paper presents the integration methods for vacco dynmmies equations of nonlinear nonholononic system,First.vacco dynamies equations are written in the canonical form and the field form.second the gradient methods the single-componentmethods and the field method are used to integrate the dynamics equations of the corresponding holonomic system respectively.And considering the restriction of nonholonomic construint to the initial conditions the solutions of Vacco dynamics cquations of nonlinear nonholonomic system are obtained.
文摘Lithology of Triassic in southwestern Sichuan is consistent with the whole basin,and there is no discussion about stratum division,the difference is stratum denudation which is made by the uplifting of Luzhou uplift,especially
基金Project supported by the National Natural Science Foundation of China(No.11925204)the 111 Project(No.B14044)。
文摘A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.
基金research grants(P0030199 and P0038209)from the Hong Kong Polytechnic University。
文摘In this study,we develop and empirically test a valuation model for a commonly encountered option in office leases:a tenant’s option to renew at future market rent(a fair market value)with lease termination as the maturity date.The model integrates decision analysis with real options analysis and market risk with private risks.“Option value”is defined as the private value of the option to either party pre-contract,while“option price”assumes a fair agreement between transacting parties and can be positive(rental premium paid)or negative(rental discount offered).Without manifest expectations,an analysis of a sample of office leases supports the model’s logic with price estimates in a practical range.The tenants’option price/value is shown to have a negative relationship with the original/renewal lease term;conversely,the landlords’option value is positively related to the original/renewal term.Comparative analyses show that transaction costs have a positive effect on tenants’option value and on prices,while vacancy costs and the vacancy period are both positively related to the landlords’option value and negatively related to price.Market rent is found to have a negative relationship with option price.Overall,this study provides a theoretical analysis and empirical tests of the value of a real option that allows option holders to renew/extend their contracts at a fair market value.
基金This work was supported by the Key International(Regional)Joint Research Program of the National Natural Science Foundation of China(No.12120101002).
文摘In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of n-dimensional SDEs under the excitation ofα-stable Lévy noise are obtained through the characteristic function of stochastic processes.Then,the short-time transition probability density func-tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski(CKS)equation and the characteristic function,and its correctness is demonstrated by proving that it satis-fies the governing equation of the solution of the SDE,which is also called the Fokker-Planck-Kolmogorov equation.Besides,illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method,and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.
文摘In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework.Numerical tests to illustrate the theoretical findings are presented.
基金Project (BK20130174) supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation) Project (1101109C) supported by Jiangsu Planned Projects for Postdoctoral Research Funds,China+1 种基金Project (201325) supported by the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).
基金The National Natural Science Foundation of China(No.10972151)
文摘The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.