To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to ac...To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to achieve rapid fetching and pushing bowl movements.According to the working principle of the slewing mechanism,a kinematics model and the optimization goal were established,respectively.Based on visual auxiliary analysis software,optimal parameters were obtained.A three-dimensional model was established to obtain a simulation trajectory by means of a virtual simulation design analysis.Three-dimensional printing technology was used to manufacture the test prototype,and the actual working trajectories of the test prototype were extracted using high-speed photography technology,which verified the consistency of the actual trajectory with the theoretical and simulated trajectories.A prototype transplanting experiment was performed with the success rate of seedling extraction of 91.2%and excellent planting rate of 82.8%,which met the requirements for integrated strawberry harvesting,planting and transplanting.The experimental results verified the correctness and feasibility of the design of integrated transplanting mechanism.展开更多
A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of...The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.展开更多
Based on systematic analysis, an Integrated Plant Maintenance System (IPMS)is proposed in this paper to cope with challenges in plant maintenance. The characteristics of theIPMS are summarized and the necessity of its...Based on systematic analysis, an Integrated Plant Maintenance System (IPMS)is proposed in this paper to cope with challenges in plant maintenance. The characteristics of theIPMS are summarized and the necessity of its modeling is set forth. Based on the analysis andcomparison among structured, object-oriented and multi-agent modeling frameworks, a multi-agentmodeling framework is selected in this paper as a theoretical guidance and together with the Troposmethod for modeling, the system model of an integrated plant maintenance system is constructed. Thesystem model developed in this paper provides a guidance template for the Baling company in itsstepwise implementation of the IPMS.展开更多
【目的】Journal of Integrative Plant Biology(JIPB)通过对标国际著名植物学期刊,探索追赶、超越发展的对策与举措,为我国加快国际一流科技期刊建设提供参考与借鉴。【方法】采用数据比较分析法和案例分析法。利用VOSviewer软件构建...【目的】Journal of Integrative Plant Biology(JIPB)通过对标国际著名植物学期刊,探索追赶、超越发展的对策与举措,为我国加快国际一流科技期刊建设提供参考与借鉴。【方法】采用数据比较分析法和案例分析法。利用VOSviewer软件构建关键词共现网络图谱。通过与植物学领域国际著名期刊Journal of Experimental Botany(JXB)对标,分析JIPB与JXB的主要文献计量指标,包括期刊影响因子、总被引频次、国际论文比、期刊引文指标、作者分布、学科辐射范围、年发文量和顶尖论文方面的情况。【结果】JIPB受“中国科技期刊卓越行动计划”(以下简称“卓越计划”)资助以来,通过采取由国内外一线权威科学家深度参与办刊、发表具有原始创新性的重大成果、建立专业的期刊管理体系、提供高效优质的出版服务等一系列举措,追赶并部分超越JXB,建设成效显著。【结论】JIPB在“卓越计划”的资助下,以国际著名植物学期刊为标杆,不断提升学术水平和国际影响力,其国际化发展策略以及办刊实践是建设卓越期刊的有益尝试,探索出一条我国建设国际一流科技期刊的卓越之路。展开更多
[Objective] The aim was to research production model of recycling agricul- ture. [Method] The production model of recycling agriculture integrating planting and breeding was explored on basis of pig raising, and maize...[Objective] The aim was to research production model of recycling agricul- ture. [Method] The production model of recycling agriculture integrating planting and breeding was explored on basis of pig raising, and maize and peanut planting, with consideration of existing problems of planting and breeding integration in China. [Result] Ecological and economic benefits of pig farms and planting bases increased significantly, and all indices improved in different degrees. [Conclusion] The research provides valuable references for pig raising in China.展开更多
This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system s...This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system simulation+plant optimization”.The first step is“system simulation”which is using the power market simu-lation model to obtain the initial nodal marginal price and curtailment of the integrated renewable generation plant.The second step is“plant optimization”which is using the operation optimization model of the integrated renewable generation plant to optimize the charge-discharge operation of energy storage.In the third step,“sys-tem simulation”is conducted again,and the combined power of renewable and energy storage inside the plant is brought into the system model and simulated again for 8,760 h of power market year-round to quantify and compare the power generation and revenue of the integrated renewable generation plant after applying energy storage.In the case analysis of the provincial power spot market,an empirical analysis of a 1 GW wind-solar-storage integrated generation plant was conducted.The results show that the economic benefit of energy storage is approximately proportional to its capacity and that there is a slowdown in the growth of economic benefits when the capacity is too large.In the case that the investment benefit of energy storage only considers the in-come of electric energy-related incomes and does not consider the income of capacity mechanism and auxiliary services,the income of energy storage cannot fulfill the economic requirements of energy storage investment.展开更多
A study was taken up on integration of ducks in private and community fish ponds in Tami Nadu. A total of 50 ha of land under private holding and community water bodies each were selected to implement this model. Duck...A study was taken up on integration of ducks in private and community fish ponds in Tami Nadu. A total of 50 ha of land under private holding and community water bodies each were selected to implement this model. Ducks were integrated based on the water spread area. Fodder, fruit, nuts, fuel, timber trees and vegetables were grown on pond bunds. Control units of fish ponds of farmers holding without integration of ducks also were taken up. A control unit also was established in the university farm land with and without integration of ducks. In private water bodies coconut trees and banana fetched additional revenue. During the first year the average fish production from the private land model was 1,552 kg and 1,731 kg for the first and second year respectively per Hectare. In community ponds the yields were 1,610 and 1,337 kg for the first and second year respectively. In field control units there was no increase in fish yield over the years. In private water bodies the beneficiaries got egg yield of 148 and 90 eggs and community water bodies 144 and 127 eggs per bird were obtained during first and second year resoectivelv.展开更多
Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power i...Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.展开更多
In celebration of JIPB's 60th anniversary, this paper summarizes and reviews the development process of the journal. To start, we offer our heartfelt thanks to JIPB's pioneer Editors-in-Chief who helped get the jour...In celebration of JIPB's 60th anniversary, this paper summarizes and reviews the development process of the journal. To start, we offer our heartfelt thanks to JIPB's pioneer Editors-in-Chief who helped get the journal off the ground and make it successful. Academic achievement is the soul of academic journals, and this paper summarizes JIPB's course of academic development by analyzing it in four stages: the first two stages are mostly qualitative analyses, and the latter two stages are dedicated to quantitative analyses. Most-cited papers were statistically analyzed. Improvements in editing, pub- lication, distribution and online accessibility--which are detailed in this paper--contribute to JIPB's sustainable development. In addition, JIPB's evaluation index and awards are provided with accompany- ing pictures. At the end of the paper, JIPB's milestones are listed chronologically. We believe that JIPB's development, from a national journal to an international one, parallels the development of the Chinese plant sciences.展开更多
Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel me...Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism.展开更多
The 2nd International Symposium on August 26-28, 2011. The symposium will provide a Integrative Plant Biology will be held in Lanzhou, China, great occasion for members of the international plant science community, se...The 2nd International Symposium on August 26-28, 2011. The symposium will provide a Integrative Plant Biology will be held in Lanzhou, China, great occasion for members of the international plant science community, senior scientists as well as students, to meet and to discuss the latest trends and innovations in plant biology. The symposium will cover areas of plant growth and development, sexual reproduction, metabolic regulation, molecular ecology and evolution, and environmental physiology. Following the extremely successful 1st International Symposium on Integrative Plant Biology held 2009 in Yantai, we hope this meeting will provide an even better platform for the participants to communicate new ideas, to discuss new technologies, and to explore future collaborations.展开更多
As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible r...As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12, 2009 (Figure 1) The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.展开更多
In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be s...In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be stored for a long time. Moreover, thegeneration and consumption of electricity is irregular, which may bring about more unexpected imbalances. Therefore, it is a crucial issue to schedule the entire energy system by optimizing the operation of energy utilization, which includes the raw energy in the production system, the generation electricity in the cogeneration system and the recycled energy in these two systems. In this paper, an improved Linear Programming model for energy optimization in the integrated iron and steel plant with a cogeneration system is established. The improved model focuses on controlling the whole energy flow and scheduling the whole energy consumption in the entire energy system between the production system and cogeneration system through optimizing all kinds of energy distribution and utilization in an integrated iron and steel plant with a cogeneration system. Case study shows that the improved model offers the optimal operation conditions at the higher energy utilization, lower energy cost and lower pollution emissions.展开更多
A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to anal...A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to analyze the bypass flue gas energy cascade utilization design which provides excellent energy savings and emission reductions.This paper then presents a design to use the low-temperature waste heat and to extract water from the flue gas.The low-grade heat can be recovered from a coal-fired unit using absorption heat pumps to increase the air preheating.This method significantly reduces the turbine steam extraction in the low pressure stages which increases the turbine power and reduces the coal consumption.This design has a small heat transfer temperature difference between the air preheater and the air warmer,resulting in a smaller exergy loss.The power output of the present design was 1024.28 MW with a coal consumption savings of 3.69 g·(kWh)^(−1).In addition,the present design extracts moisture out of the flue gas to produce 46.48 t·h^(−1)of water.The main goal of this work is to provide a theoretical analysis for studying complex thermal power plant systems and various energy conservation and CO_(2)reduction options for conventional power plants.展开更多
基金Supported by the National Natural Science Foundation of China Youth Fund Project(52005221)"the 13th Five-Year"National Key Research and Development Program:High-speed Planting Technology and Equipment Research and Development(2017YFD0700800)。
文摘To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to achieve rapid fetching and pushing bowl movements.According to the working principle of the slewing mechanism,a kinematics model and the optimization goal were established,respectively.Based on visual auxiliary analysis software,optimal parameters were obtained.A three-dimensional model was established to obtain a simulation trajectory by means of a virtual simulation design analysis.Three-dimensional printing technology was used to manufacture the test prototype,and the actual working trajectories of the test prototype were extracted using high-speed photography technology,which verified the consistency of the actual trajectory with the theoretical and simulated trajectories.A prototype transplanting experiment was performed with the success rate of seedling extraction of 91.2%and excellent planting rate of 82.8%,which met the requirements for integrated strawberry harvesting,planting and transplanting.The experimental results verified the correctness and feasibility of the design of integrated transplanting mechanism.
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
基金the High Technology Research and Development (863) Program (2003AA517020).
文摘The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.
基金theHunanProvince(China)DemonstrationProgramforInformatizationinManufactureun derGrantNo. Hnmie A 070,andHunanProvinceScienceandTechnologyDepartmentPlanProjectunderGrantNo.03GKY3057
文摘Based on systematic analysis, an Integrated Plant Maintenance System (IPMS)is proposed in this paper to cope with challenges in plant maintenance. The characteristics of theIPMS are summarized and the necessity of its modeling is set forth. Based on the analysis andcomparison among structured, object-oriented and multi-agent modeling frameworks, a multi-agentmodeling framework is selected in this paper as a theoretical guidance and together with the Troposmethod for modeling, the system model of an integrated plant maintenance system is constructed. Thesystem model developed in this paper provides a guidance template for the Baling company in itsstepwise implementation of the IPMS.
文摘【目的】Journal of Integrative Plant Biology(JIPB)通过对标国际著名植物学期刊,探索追赶、超越发展的对策与举措,为我国加快国际一流科技期刊建设提供参考与借鉴。【方法】采用数据比较分析法和案例分析法。利用VOSviewer软件构建关键词共现网络图谱。通过与植物学领域国际著名期刊Journal of Experimental Botany(JXB)对标,分析JIPB与JXB的主要文献计量指标,包括期刊影响因子、总被引频次、国际论文比、期刊引文指标、作者分布、学科辐射范围、年发文量和顶尖论文方面的情况。【结果】JIPB受“中国科技期刊卓越行动计划”(以下简称“卓越计划”)资助以来,通过采取由国内外一线权威科学家深度参与办刊、发表具有原始创新性的重大成果、建立专业的期刊管理体系、提供高效优质的出版服务等一系列举措,追赶并部分超越JXB,建设成效显著。【结论】JIPB在“卓越计划”的资助下,以国际著名植物学期刊为标杆,不断提升学术水平和国际影响力,其国际化发展策略以及办刊实践是建设卓越期刊的有益尝试,探索出一条我国建设国际一流科技期刊的卓越之路。
基金Supported by Jiangsu Agriculture Science and Technology Innovation Fund(JASTIF)[CX(11)2037]~~
文摘[Objective] The aim was to research production model of recycling agricul- ture. [Method] The production model of recycling agriculture integrating planting and breeding was explored on basis of pig raising, and maize and peanut planting, with consideration of existing problems of planting and breeding integration in China. [Result] Ecological and economic benefits of pig farms and planting bases increased significantly, and all indices improved in different degrees. [Conclusion] The research provides valuable references for pig raising in China.
基金funded by the China Energy Investment Cor-poration under the program“Simulation of energy storage application scenarios in China and research on development strategy of China En-ergy Investment Corporation”(Grant No.:GJNY-21-143).
文摘This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system simulation+plant optimization”.The first step is“system simulation”which is using the power market simu-lation model to obtain the initial nodal marginal price and curtailment of the integrated renewable generation plant.The second step is“plant optimization”which is using the operation optimization model of the integrated renewable generation plant to optimize the charge-discharge operation of energy storage.In the third step,“sys-tem simulation”is conducted again,and the combined power of renewable and energy storage inside the plant is brought into the system model and simulated again for 8,760 h of power market year-round to quantify and compare the power generation and revenue of the integrated renewable generation plant after applying energy storage.In the case analysis of the provincial power spot market,an empirical analysis of a 1 GW wind-solar-storage integrated generation plant was conducted.The results show that the economic benefit of energy storage is approximately proportional to its capacity and that there is a slowdown in the growth of economic benefits when the capacity is too large.In the case that the investment benefit of energy storage only considers the in-come of electric energy-related incomes and does not consider the income of capacity mechanism and auxiliary services,the income of energy storage cannot fulfill the economic requirements of energy storage investment.
文摘A study was taken up on integration of ducks in private and community fish ponds in Tami Nadu. A total of 50 ha of land under private holding and community water bodies each were selected to implement this model. Ducks were integrated based on the water spread area. Fodder, fruit, nuts, fuel, timber trees and vegetables were grown on pond bunds. Control units of fish ponds of farmers holding without integration of ducks also were taken up. A control unit also was established in the university farm land with and without integration of ducks. In private water bodies coconut trees and banana fetched additional revenue. During the first year the average fish production from the private land model was 1,552 kg and 1,731 kg for the first and second year respectively per Hectare. In community ponds the yields were 1,610 and 1,337 kg for the first and second year respectively. In field control units there was no increase in fish yield over the years. In private water bodies the beneficiaries got egg yield of 148 and 90 eggs and community water bodies 144 and 127 eggs per bird were obtained during first and second year resoectivelv.
基金supported in part by the National Natural Science Foundation of China (No. 51977087)in part by the Science and Technology Project of State Grid Corporation of China (No. 1400-202199550A-0-5-ZN)。
文摘Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.
文摘In celebration of JIPB's 60th anniversary, this paper summarizes and reviews the development process of the journal. To start, we offer our heartfelt thanks to JIPB's pioneer Editors-in-Chief who helped get the journal off the ground and make it successful. Academic achievement is the soul of academic journals, and this paper summarizes JIPB's course of academic development by analyzing it in four stages: the first two stages are mostly qualitative analyses, and the latter two stages are dedicated to quantitative analyses. Most-cited papers were statistically analyzed. Improvements in editing, pub- lication, distribution and online accessibility--which are detailed in this paper--contribute to JIPB's sustainable development. In addition, JIPB's evaluation index and awards are provided with accompany- ing pictures. At the end of the paper, JIPB's milestones are listed chronologically. We believe that JIPB's development, from a national journal to an international one, parallels the development of the Chinese plant sciences.
基金The research work was financially supported by the National Natural Science Foundation of China(Grant No.51775512,51975536)Key research projects of Zhejiang Province(Grant No.2018C02046)+2 种基金Project funded by China Postdoctoral Science FoundationBasic public welfare research projects of Zhejiang Province(Grant No.LGN19E050002,LGN20E050006)Basic Scientific Research Foundation of Zhejiang Sci-Tech University.
文摘Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism.
文摘The 2nd International Symposium on August 26-28, 2011. The symposium will provide a Integrative Plant Biology will be held in Lanzhou, China, great occasion for members of the international plant science community, senior scientists as well as students, to meet and to discuss the latest trends and innovations in plant biology. The symposium will cover areas of plant growth and development, sexual reproduction, metabolic regulation, molecular ecology and evolution, and environmental physiology. Following the extremely successful 1st International Symposium on Integrative Plant Biology held 2009 in Yantai, we hope this meeting will provide an even better platform for the participants to communicate new ideas, to discuss new technologies, and to explore future collaborations.
文摘As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12, 2009 (Figure 1) The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.
基金We are very grateful to the editor and the referees for their valuable comments and suggestions. This research is supported by National Natural Science Foundation of China (NSFC) (Nos. 71131002, 71521001, 71501055, 71401048, 71573071 and 71571060).
文摘In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be stored for a long time. Moreover, thegeneration and consumption of electricity is irregular, which may bring about more unexpected imbalances. Therefore, it is a crucial issue to schedule the entire energy system by optimizing the operation of energy utilization, which includes the raw energy in the production system, the generation electricity in the cogeneration system and the recycled energy in these two systems. In this paper, an improved Linear Programming model for energy optimization in the integrated iron and steel plant with a cogeneration system is established. The improved model focuses on controlling the whole energy flow and scheduling the whole energy consumption in the entire energy system between the production system and cogeneration system through optimizing all kinds of energy distribution and utilization in an integrated iron and steel plant with a cogeneration system. Case study shows that the improved model offers the optimal operation conditions at the higher energy utilization, lower energy cost and lower pollution emissions.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(No.51876057)the NSFC Projects of International Cooperation and Exchanges(No.52061125101)the Fundamental Research Funds for the Central Universities(No.2022JG006).
文摘A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to analyze the bypass flue gas energy cascade utilization design which provides excellent energy savings and emission reductions.This paper then presents a design to use the low-temperature waste heat and to extract water from the flue gas.The low-grade heat can be recovered from a coal-fired unit using absorption heat pumps to increase the air preheating.This method significantly reduces the turbine steam extraction in the low pressure stages which increases the turbine power and reduces the coal consumption.This design has a small heat transfer temperature difference between the air preheater and the air warmer,resulting in a smaller exergy loss.The power output of the present design was 1024.28 MW with a coal consumption savings of 3.69 g·(kWh)^(−1).In addition,the present design extracts moisture out of the flue gas to produce 46.48 t·h^(−1)of water.The main goal of this work is to provide a theoretical analysis for studying complex thermal power plant systems and various energy conservation and CO_(2)reduction options for conventional power plants.