AIM: The purpose of the present study is to compare the optical properties of normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion in vitr...AIM: The purpose of the present study is to compare the optical properties of normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion in vitro at 476.5, 488, 496.5, 514.5 and 532 nm. We believe these differences in optical properties should help differential diagnosis of human colon tissues by using optical methods.METHODS: In vitro optical properties were investigated for four kinds of tissues: normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion. Tissue samples were taken from 13 human colons (13 adenomatous, 13 normal). From the normal human colons a total of 26 tissue samples, with a mean thickness of 0.40 mm, were used (13 from mucosa/submucosa and 13 from muscle layer/chorion), and from the adenomatous human bladders a total of 26 tissue samples, with a mean thickness of 0.40 mm, were used (13 from mucosa/submucosa and 13 from muscle layer/chorion). The measurements were performed using a double-integratingsphere setup and the optical properties were assessed from these measurements using the adding-doubling method that was considered reliable.RESULTS: The results of measurement showed that there were significant differences in the absorption coefficients and scattering coefficients between normal and adenomatous human colon mucosa/submucosa at the same wavelength,and there were also significant differences in the two optical parameters between both colon muscle layer/chorion at the same wavelength. And there were large differences in the anisotropy factors between both colon mucosa/submucosa at the same wavelength, there were also large differences in the anisotropy factors between both colon muscle layer/chorion at the same wavelength.There were large differences in the value ranges of the absorption coefficients, scattering coefficients and anisotropy factors between both colon mucosa/submucosa,and there were also large differences in these value ranges between both colon muscle layer/chorion. There are the same orders of magnitude in the absorption coefficients for four kinds of colon tissues. The scattering coefficients of these tissues exceed the absorption coefficients by at least two orders of magnitude.CONCLUSION: There were large differences in the three optical parameters between normal and adenomatous human colon mucosa/submucosa at the same laser wavelength, and there were also large differences in these parameters between both colon muscle layer/chorion at the same laser wavelength. Large differences in optical parameters indicate that there were large differences in compositions and structures between both colon mucosa/submucosa, and between both colon muscle layer/chorion.Optical parameters for four kinds of colon tissues are wavelength dependent, and these differences would be useful and helpful in clinical applications of laser and tumors photodynamic therapy (PDT).展开更多
There has been an ongoing search for clinically acceptable methods for the accurate,efficient and simple diagnosis and prognosis of hepatocellular carcinoma(HCC).Optical spectroscopy is a technique with potential cl...There has been an ongoing search for clinically acceptable methods for the accurate,efficient and simple diagnosis and prognosis of hepatocellular carcinoma(HCC).Optical spectroscopy is a technique with potential clinical applications to diagnose cancer diseases.The purpose of this study was to obtain the optical properties of HCC tissues and non-tumorous hepatic tissues and identify the difference between them.A total of 55 tissue samples(HCC tissue,n=38;non-tumorous hepatic tissue,n=17) were surgically resected from patients with HCC.The optical parameters were measured in 10-nm steps using single-integrating-sphere system in the wavelength range of 400 to 1800 nm.It was found that the optical properties and their differences varied with the wavelength for the HCC tissue and the non-tumorous hepatic tissue in the entire wavelength range of research.The absorption coefficient of the HCC tissue(1.48±0.99,1.46±0.88,0.86±0.61,2.15±0.53,0.54±0.10,0.79±0.15 mm-1) was significantly lower than that of the non-tumorous hepatic tissue(2.79±1.73,3.13±1.47,3.06±2.79,2.57±0.55,0.62±0.10,0.93±0.16 mm-1) at wavelengths of 400,410,450,1450,1660 and 1800 nm,respectively(P0.05).The reduced scattering coefficient of HCC tissue(5.28±1.70,4.91±1.54,1.26±0.35 mm-1) and non-tumorous hepatic tissue(8.14±3.70,9.27±3.08,2.55±0.57 mm-1) was significantly different at 460,500 and 1800 nm respectively(P0.05).These results show different pathologic liver tissues have different optical properties.It provides a better understanding of the relationship between optical parameters and physiological characteristics in human liver tissues.And it would be very useful for developing a non-invasive,real-time,simple and efficient way for medical management of HCC in the future.展开更多
基金Supported by the National Major Fundamental Research Project of China 2002CCC00400the Team Project of Natural Science Foundation of Guangdong Province 015012
文摘AIM: The purpose of the present study is to compare the optical properties of normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion in vitro at 476.5, 488, 496.5, 514.5 and 532 nm. We believe these differences in optical properties should help differential diagnosis of human colon tissues by using optical methods.METHODS: In vitro optical properties were investigated for four kinds of tissues: normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion. Tissue samples were taken from 13 human colons (13 adenomatous, 13 normal). From the normal human colons a total of 26 tissue samples, with a mean thickness of 0.40 mm, were used (13 from mucosa/submucosa and 13 from muscle layer/chorion), and from the adenomatous human bladders a total of 26 tissue samples, with a mean thickness of 0.40 mm, were used (13 from mucosa/submucosa and 13 from muscle layer/chorion). The measurements were performed using a double-integratingsphere setup and the optical properties were assessed from these measurements using the adding-doubling method that was considered reliable.RESULTS: The results of measurement showed that there were significant differences in the absorption coefficients and scattering coefficients between normal and adenomatous human colon mucosa/submucosa at the same wavelength,and there were also significant differences in the two optical parameters between both colon muscle layer/chorion at the same wavelength. And there were large differences in the anisotropy factors between both colon mucosa/submucosa at the same wavelength, there were also large differences in the anisotropy factors between both colon muscle layer/chorion at the same wavelength.There were large differences in the value ranges of the absorption coefficients, scattering coefficients and anisotropy factors between both colon mucosa/submucosa,and there were also large differences in these value ranges between both colon muscle layer/chorion. There are the same orders of magnitude in the absorption coefficients for four kinds of colon tissues. The scattering coefficients of these tissues exceed the absorption coefficients by at least two orders of magnitude.CONCLUSION: There were large differences in the three optical parameters between normal and adenomatous human colon mucosa/submucosa at the same laser wavelength, and there were also large differences in these parameters between both colon muscle layer/chorion at the same laser wavelength. Large differences in optical parameters indicate that there were large differences in compositions and structures between both colon mucosa/submucosa, and between both colon muscle layer/chorion.Optical parameters for four kinds of colon tissues are wavelength dependent, and these differences would be useful and helpful in clinical applications of laser and tumors photodynamic therapy (PDT).
文摘There has been an ongoing search for clinically acceptable methods for the accurate,efficient and simple diagnosis and prognosis of hepatocellular carcinoma(HCC).Optical spectroscopy is a technique with potential clinical applications to diagnose cancer diseases.The purpose of this study was to obtain the optical properties of HCC tissues and non-tumorous hepatic tissues and identify the difference between them.A total of 55 tissue samples(HCC tissue,n=38;non-tumorous hepatic tissue,n=17) were surgically resected from patients with HCC.The optical parameters were measured in 10-nm steps using single-integrating-sphere system in the wavelength range of 400 to 1800 nm.It was found that the optical properties and their differences varied with the wavelength for the HCC tissue and the non-tumorous hepatic tissue in the entire wavelength range of research.The absorption coefficient of the HCC tissue(1.48±0.99,1.46±0.88,0.86±0.61,2.15±0.53,0.54±0.10,0.79±0.15 mm-1) was significantly lower than that of the non-tumorous hepatic tissue(2.79±1.73,3.13±1.47,3.06±2.79,2.57±0.55,0.62±0.10,0.93±0.16 mm-1) at wavelengths of 400,410,450,1450,1660 and 1800 nm,respectively(P0.05).The reduced scattering coefficient of HCC tissue(5.28±1.70,4.91±1.54,1.26±0.35 mm-1) and non-tumorous hepatic tissue(8.14±3.70,9.27±3.08,2.55±0.57 mm-1) was significantly different at 460,500 and 1800 nm respectively(P0.05).These results show different pathologic liver tissues have different optical properties.It provides a better understanding of the relationship between optical parameters and physiological characteristics in human liver tissues.And it would be very useful for developing a non-invasive,real-time,simple and efficient way for medical management of HCC in the future.
基金the key laboratory of optoelectronic science and technology for medicine (Fu-jian Normal University),Ministry of Education.China under Grant No.JYG0503