An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear...An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.展开更多
An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key fe...An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.展开更多
Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in trac...Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in tracking long-term dynamics.For improving such a higher-order accurate algorithm,this paper proposes a two sub-step higher-order algorithm with unconditional stability and controllable dissipation.In the proposed algorithm,a time step interval[t_(k),t_(k)+h]where h stands for the size of a time step is divided into two sub-steps[t_(k),t_(k)+γh]and[t_(k)+γh,t_(k)+h].A non-dissipative fourth-order algorithm is used in the rst sub-step to ensure low-frequency accuracy and a dissipative third-order algorithm is employed in the second sub-step to lter out the contribution of high-frequency modes.Besides,two approaches are used to design the algorithm parameterγ.The rst approach determinesγby maximizing low-frequency accuracy and the other determinesγfor quickly damping out highfrequency modes.The present algorithm usesρ_(∞)to exactly control the degree of numerical dissipation,and it is third-order accurate when 0≤ρ_(∞)<1 and fourth-order accurate whenρ_(∞)=1.Furthermore,the proposed algorithm is self-starting and easy to implement.Some illustrative linear and nonlinear examples are solved to check the performances of the proposed two sub-step higher-order algorithm.展开更多
As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer...As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer-oriented element integration algorithm. In this algorithm, the relative dielectric constant and permeability are considered as constants for each the very thin monolayer of CPML, and the element integration of multilayer along the normal direction is substituted by the element integration of m...展开更多
This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates...This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.展开更多
The paper is devoted to proposing a constitutive model based on micromechanics. The joints in rock masses are treated as penny-shaped inclusion in solid but not through structural planes by considering joint density, ...The paper is devoted to proposing a constitutive model based on micromechanics. The joints in rock masses are treated as penny-shaped inclusion in solid but not through structural planes by considering joint density, closure effect, joint geometry. The mechanical behavior of the joints is represented by an elasto-plastic constitutive law. Mori-Tanaka method is used to derive the relationship between the joint deformations and macroscopic strains. The incremental stress-strain relationship of rock masses is formulated by taking the volume average of the representative volume element. Meanwhile, the behavior of joints is obtained. By using implicit integration algorithms, the consistent tangent moduli are proposed and the method of updating stresses and joint displacements is presented. Some examples are calculated by ABAQUS user defined material subroutine based on this model.展开更多
Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic sy...Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti...In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.展开更多
By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variable...By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.展开更多
The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data.However,this method suffers from cycle skipping i...The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data.However,this method suffers from cycle skipping in the time domain or phase wrapping in the frequency because of the inaccurate initial velocity or the lack of low-frequency information.furthermore,the object scale of inversion is affected by the observation system and wavelet bandwidth,the inversion for large-scale structures is a strongly nonlinear problem that is considerably difficult to solve.In this study,we modify the unwrapping algorithm to obtain accurate unwrapped instantaneous phase,then using this phase conducts the inversion for reducing the strong nonlinearity.The normal instantaneous phases are measured as modulo 2π,leading the loss of true phase information.The path integral algorithm can be used to unwrap the instantaneous phase of the seismograms having time series and onedimensional(1 D)signal characteristics.However,the unwrapped phase is easily affected by the numerical simulation and phase calculations,resulting in the low resolution of inversion parameters.To increase the noise resistance and ensure the inversion accuracy,we present an improved unwrapping method by adding an envelope into the path integral unwrapping algorithm for restricting the phase mutation points,getting accurate instantaneous phase.The objective function constructed by unwrapping instantaneous phase is less affected by the local minimum,thereby making it suitable for full-waveform inversion.Further,the corresponding instantaneous phase inversion formulas are provided.Using the improved algorithm,we can invert the low-wavenumber components of the underneath structure and ensure the accuracy of the inverted velocity.Finally,the numerical tests of the 2 D Marmousi model and 3 D SEG/EAGE salt model prove the accuracy of the proposed algorithm and the ability to restore largescale low-wavenumber structures,respectively.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
PI (proportional-integral) control algorithm is applied to control WlP (work-in-progress) in a discrete manufacturing system, where the cascade control of PI controllers is presented. It is in the frequency domain...PI (proportional-integral) control algorithm is applied to control WlP (work-in-progress) in a discrete manufacturing system, where the cascade control of PI controllers is presented. It is in the frequency domain that the PI controller is designed with constraints on sensitivity options to ensure the stability and robustness of its parameters. A case is evaluated on a motorcycle engine crankcase production system, whose simulation results confirm that demand fluctuations can be compensated by PI controllers under a normal demand. PI controllers also possess low sensitivity to the distribution of production times.展开更多
Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop...Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.展开更多
In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise ...In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved.展开更多
The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applicat...The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network.展开更多
The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early d...The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.展开更多
Beer fermentation process is a complex biochemical reaction process.It is the most important to control temperature of the wort in fermentation tank in accordance with the beer fermentation temperature curve so as to ...Beer fermentation process is a complex biochemical reaction process.It is the most important to control temperature of the wort in fermentation tank in accordance with the beer fermentation temperature curve so as to ensure the completion of fermentation.The controlled object is characterized by large inertia,long time delay and mutual coupling of three temperature areas.Based on this,a temperature control method for beer fermentation system is designed.Using digital incremental proportion integration differentiation (PID) control algorithm,the controlled quantity is transmitted to the controlled object after diagonal matrix decoupling.This simulation system can be completed in laboratory using VB and Kingview software,so it has the features of good security and low cost.It is very suitable for experimental teaching.展开更多
Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages...Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.展开更多
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant Nos.2017A02,2016B09 and 2016A06the National Science-technology Support Plan Projects under Grant No.2015BAK17B02the National Natural Science Foundation of China under Grant Nos.51378478,51408565,51678538 and 51161120360
文摘An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.
基金supported by the Key Project of the National Natural Science Foundation of China(10932003)Project of Chinese National Programs for Fundamental Research and Development(2012CB619603 and 2010CB832700)"04" Great Project of Ministry of Industrialization and Information of China (2011ZX04001-21)
文摘An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.
基金supported by the National Natural Science Foundation of China(Grant Numbers 11872090,11672019,11472035).
文摘Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in tracking long-term dynamics.For improving such a higher-order accurate algorithm,this paper proposes a two sub-step higher-order algorithm with unconditional stability and controllable dissipation.In the proposed algorithm,a time step interval[t_(k),t_(k)+h]where h stands for the size of a time step is divided into two sub-steps[t_(k),t_(k)+γh]and[t_(k)+γh,t_(k)+h].A non-dissipative fourth-order algorithm is used in the rst sub-step to ensure low-frequency accuracy and a dissipative third-order algorithm is employed in the second sub-step to lter out the contribution of high-frequency modes.Besides,two approaches are used to design the algorithm parameterγ.The rst approach determinesγby maximizing low-frequency accuracy and the other determinesγfor quickly damping out highfrequency modes.The present algorithm usesρ_(∞)to exactly control the degree of numerical dissipation,and it is third-order accurate when 0≤ρ_(∞)<1 and fourth-order accurate whenρ_(∞)=1.Furthermore,the proposed algorithm is self-starting and easy to implement.Some illustrative linear and nonlinear examples are solved to check the performances of the proposed two sub-step higher-order algorithm.
基金National Natural Science Foundation of China (10477018) Science and Technology Innovation Foundation of North-western Polytechnical University (W016143)
文摘As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer-oriented element integration algorithm. In this algorithm, the relative dielectric constant and permeability are considered as constants for each the very thin monolayer of CPML, and the element integration of multilayer along the normal direction is substituted by the element integration of m...
基金Aeronautical Science Foundation of China(20080852011,20070852009)
文摘This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 50539030 and 10772021)National Basic Research Program of China (‘973’ Program) (Grant No. 2010CB7321004)
文摘The paper is devoted to proposing a constitutive model based on micromechanics. The joints in rock masses are treated as penny-shaped inclusion in solid but not through structural planes by considering joint density, closure effect, joint geometry. The mechanical behavior of the joints is represented by an elasto-plastic constitutive law. Mori-Tanaka method is used to derive the relationship between the joint deformations and macroscopic strains. The incremental stress-strain relationship of rock masses is formulated by taking the volume average of the representative volume element. Meanwhile, the behavior of joints is obtained. By using implicit integration algorithms, the consistent tangent moduli are proposed and the method of updating stresses and joint displacements is presented. Some examples are calculated by ABAQUS user defined material subroutine based on this model.
基金Science Council,Chinese Taipei,Under Grant No. NSC-96-2211-E-027-030
文摘Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金supported by the National Natural Science Foundation of China(grant number 21476261)the Key Research and Development Plan Project of Shandong Province(grant number 2015GGX107004)
文摘In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.
文摘By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.
基金supported by the National Science and Technology major projects of China(No.2017ZX05032-003-002)Shandong Key Research and Development Plan Project(No.2018GHY115016)China University of Petroleum(East China)Independent Innovation Research Project(No.18CX06023A)。
文摘The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data.However,this method suffers from cycle skipping in the time domain or phase wrapping in the frequency because of the inaccurate initial velocity or the lack of low-frequency information.furthermore,the object scale of inversion is affected by the observation system and wavelet bandwidth,the inversion for large-scale structures is a strongly nonlinear problem that is considerably difficult to solve.In this study,we modify the unwrapping algorithm to obtain accurate unwrapped instantaneous phase,then using this phase conducts the inversion for reducing the strong nonlinearity.The normal instantaneous phases are measured as modulo 2π,leading the loss of true phase information.The path integral algorithm can be used to unwrap the instantaneous phase of the seismograms having time series and onedimensional(1 D)signal characteristics.However,the unwrapped phase is easily affected by the numerical simulation and phase calculations,resulting in the low resolution of inversion parameters.To increase the noise resistance and ensure the inversion accuracy,we present an improved unwrapping method by adding an envelope into the path integral unwrapping algorithm for restricting the phase mutation points,getting accurate instantaneous phase.The objective function constructed by unwrapping instantaneous phase is less affected by the local minimum,thereby making it suitable for full-waveform inversion.Further,the corresponding instantaneous phase inversion formulas are provided.Using the improved algorithm,we can invert the low-wavenumber components of the underneath structure and ensure the accuracy of the inverted velocity.Finally,the numerical tests of the 2 D Marmousi model and 3 D SEG/EAGE salt model prove the accuracy of the proposed algorithm and the ability to restore largescale low-wavenumber structures,respectively.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
基金Science Fund of Key Laboratory of Intel-ligent Control Theory and Application of High Academies in Liaoning Province (No.200521303)
文摘PI (proportional-integral) control algorithm is applied to control WlP (work-in-progress) in a discrete manufacturing system, where the cascade control of PI controllers is presented. It is in the frequency domain that the PI controller is designed with constraints on sensitivity options to ensure the stability and robustness of its parameters. A case is evaluated on a motorcycle engine crankcase production system, whose simulation results confirm that demand fluctuations can be compensated by PI controllers under a normal demand. PI controllers also possess low sensitivity to the distribution of production times.
基金This work was funded by the High- tech Research and Development Program of China (863 Program) under Grant 2006AA01Z208.
文摘Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.
文摘In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved.
文摘The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network.
基金Projects(UKM-KK-03-FRGS0118-2010,UKM-OUP-NBT-28-135/2011)supported by FRGS Universiti Kebangsaan Malaysia,Malaysia
文摘The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.
基金Shandong Province Department of Education Science and Technology Program(No.J05C11)
文摘Beer fermentation process is a complex biochemical reaction process.It is the most important to control temperature of the wort in fermentation tank in accordance with the beer fermentation temperature curve so as to ensure the completion of fermentation.The controlled object is characterized by large inertia,long time delay and mutual coupling of three temperature areas.Based on this,a temperature control method for beer fermentation system is designed.Using digital incremental proportion integration differentiation (PID) control algorithm,the controlled quantity is transmitted to the controlled object after diagonal matrix decoupling.This simulation system can be completed in laboratory using VB and Kingview software,so it has the features of good security and low cost.It is very suitable for experimental teaching.
基金Supported by National Outstanding Youth Science Foundation of China (No.79725002)
文摘Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.