Flow birefringent method and its data processing was reviewed and a new hybrid method of flow birefringence and boundary integration was introduced. The basic equations and boundary conditions suitable to the hybrid m...Flow birefringent method and its data processing was reviewed and a new hybrid method of flow birefringence and boundary integration was introduced. The basic equations and boundary conditions suitable to the hybrid method were derived, and a comparison of the hybrid and other classical methods was given. Finally as an example, the flow in a step converging tube was analyzed by the given method.展开更多
By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations ...By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.展开更多
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This st...In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.展开更多
The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approxim...The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method are studied through numerical examples.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the ...We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the domain D with a crack Г. Both sides of the crack F are given Dirichlet-impedance boundary conditions, and different boundary condition (Dirichlet, Neumann or Impedance boundary condition) is set on the boundary of D. Applying potential theory, the problem can be reformulated as a system of boundary integral equations. We establish the existence and uniqueness of the solution to the system by using the Fredholm theory.展开更多
Based on Biot’s theory and considering the properties of a cavity,the boundary integral equations for the numerical simulation of wave scattering around a cavity with a circular cross-section embedded in saturated so...Based on Biot’s theory and considering the properties of a cavity,the boundary integral equations for the numerical simulation of wave scattering around a cavity with a circular cross-section embedded in saturated soil are obtained using integral transform methods.The Cauchy type singularity of the boundary integral equation is discussed.The effectiveness of the properties of soil mass and incident field on the dynamic stress concentration and pore pressure concentration around a cavity is analyzed.Our results are in good agreement with the existing solution.The numerical results of this work show that the dynamic stress concentration and pore pressure concentration are influenced by the degree of fluid–solid coupling as well as the pore compressibility and water permeability of saturated soil.With increased degree of fluid–solid coupling,the dynamic stress concentration improves from 1.87 to 3.42 and the scattering becomes more significant.With decreased index of soil mass compressibility,the dynamic stress concentration increases and its maximum reaches 3.67.The dynamic stress concentration increases from 1.64 to 3.49 and pore pressure concentration improves from 0.18 to 0.46 with decreased water permeability of saturated soil.展开更多
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation Method (BIEM). Simple...The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation Method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with those by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two- layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coef- ficients and energies are analyzed in detail, and some imeresting physical phenomena are observed.展开更多
By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at t...By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.展开更多
The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip...The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip elements and other crack linear elements, the boundary element formulas of the torsion rigidity and stress intensity factors were given. Some typical torsion problems of a cylinder involving a straight, kinked or curvilinear crack were calculated. The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas, which demonstrates the validity and applicability of the present boundary element method.展开更多
From the point of view of energy analysis, the cause that the uniqueness of the boundary integral equation induced from the exterior Helmholtz problem does not hold is investigated in this paper. It is proved that the...From the point of view of energy analysis, the cause that the uniqueness of the boundary integral equation induced from the exterior Helmholtz problem does not hold is investigated in this paper. It is proved that the Sommerfeld's condition at the infinity is changed so that it is suitable not only for the radiative wave but also for the absorptive wave when we use the boundary integral equation to describe the exterior Helmholtz problem. There fore, the total energy of the system is conservative. The mathematical dealings to guarantee the uniqueness are discussed based upon this explanation.展开更多
The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However...The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.展开更多
The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of...The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of boundary integral equation is proposed in this paper, together with the solution procedures for multiple crack problems in plane elasticity. With the proposed approach, the multiple crack problems can be solved with the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix as that in the numerical Green’s function (NGF) approach but without the trouble to determine the complementary solutions since the standard boundary element discretization on the crack surface is no longer required with the proposed approach. Some numerical examples computing the stress intensity factors are presented and compared with those in literature to show the accuracy and the effectiveness of the proposed approach.展开更多
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and elemen...The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation o...With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in the boundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thus getting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are in general complicated. The numerical examples were given in three dimensional elasticity, verifying the effectiveness of the proposed approach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.展开更多
In this paper, a kind of singularly perturbed first-order differential equations with integral boundary condition are considered. With the method of boundary layer function and the Banach fixed-point theorem, the unif...In this paper, a kind of singularly perturbed first-order differential equations with integral boundary condition are considered. With the method of boundary layer function and the Banach fixed-point theorem, the uniformly valid asymptotic solution of the original problem is obtained.展开更多
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The...A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.展开更多
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation co...Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.展开更多
基金The project supported by National Natural Science Foundation of China (NSFC)
文摘Flow birefringent method and its data processing was reviewed and a new hybrid method of flow birefringence and boundary integration was introduced. The basic equations and boundary conditions suitable to the hybrid method were derived, and a comparison of the hybrid and other classical methods was given. Finally as an example, the flow in a step converging tube was analyzed by the given method.
基金SuppoSed by the NSF of Anhui Provincial Education Depaxtment(KJ2012A265,KJ2012B187)
文摘By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10902076)the Natural Science Foundation of Shanxi Province of China(Grant No.2007011009)+1 种基金the Scientific Research and Development Program of the Shanxi Higher Education Institutions(Grant No.20091131)the Doctoral Startup Foundation of Taiyuan University of Science and Technology(Grant No.200708)
文摘In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.
基金Project supported by the Key Lab of Geomechanics, Chinese Academy of Sciences (No.Z110202).
文摘The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method are studied through numerical examples.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金supported by the grant from the National Natural Science Foundation of China(11301405)supported by the grants from the National Natural Science Foundation of China(11171127 and 10871080)
文摘We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the domain D with a crack Г. Both sides of the crack F are given Dirichlet-impedance boundary conditions, and different boundary condition (Dirichlet, Neumann or Impedance boundary condition) is set on the boundary of D. Applying potential theory, the problem can be reformulated as a system of boundary integral equations. We establish the existence and uniqueness of the solution to the system by using the Fredholm theory.
基金Projects(50969007,51269021) supported by the National Natural Science Foundation of ChinaProjects(20114BAB206012,20133ACB20006) supported by the Natural Science Foundation of Jiangxi Province of China
文摘Based on Biot’s theory and considering the properties of a cavity,the boundary integral equations for the numerical simulation of wave scattering around a cavity with a circular cross-section embedded in saturated soil are obtained using integral transform methods.The Cauchy type singularity of the boundary integral equation is discussed.The effectiveness of the properties of soil mass and incident field on the dynamic stress concentration and pore pressure concentration around a cavity is analyzed.Our results are in good agreement with the existing solution.The numerical results of this work show that the dynamic stress concentration and pore pressure concentration are influenced by the degree of fluid–solid coupling as well as the pore compressibility and water permeability of saturated soil.With increased degree of fluid–solid coupling,the dynamic stress concentration improves from 1.87 to 3.42 and the scattering becomes more significant.With decreased index of soil mass compressibility,the dynamic stress concentration increases and its maximum reaches 3.67.The dynamic stress concentration increases from 1.64 to 3.49 and pore pressure concentration improves from 0.18 to 0.46 with decreased water permeability of saturated soil.
基金This work was financially supported bythe National Natural Science Foundation of China(Grant No50679078)
文摘The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation Method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with those by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two- layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coef- ficients and energies are analyzed in detail, and some imeresting physical phenomena are observed.
基金Project supported by the National Natural Science Foundation of China (No. 10172038).
文摘By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.
文摘The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip elements and other crack linear elements, the boundary element formulas of the torsion rigidity and stress intensity factors were given. Some typical torsion problems of a cylinder involving a straight, kinked or curvilinear crack were calculated. The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas, which demonstrates the validity and applicability of the present boundary element method.
文摘From the point of view of energy analysis, the cause that the uniqueness of the boundary integral equation induced from the exterior Helmholtz problem does not hold is investigated in this paper. It is proved that the Sommerfeld's condition at the infinity is changed so that it is suitable not only for the radiative wave but also for the absorptive wave when we use the boundary integral equation to describe the exterior Helmholtz problem. There fore, the total energy of the system is conservative. The mathematical dealings to guarantee the uniqueness are discussed based upon this explanation.
基金Project supported by the National Natural Science Foundation of China (No.10571110)the Natural Science Foundation of Shandong Province of China (No.2003ZX12)
文摘The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.
基金supported by the National Natural Science Foundation of China (Grant No.10972131)the Graduate Innovation Foundation of Shanghai University (Grant No.SHUCX102351)
文摘The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of boundary integral equation is proposed in this paper, together with the solution procedures for multiple crack problems in plane elasticity. With the proposed approach, the multiple crack problems can be solved with the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix as that in the numerical Green’s function (NGF) approach but without the trouble to determine the complementary solutions since the standard boundary element discretization on the crack surface is no longer required with the proposed approach. Some numerical examples computing the stress intensity factors are presented and compared with those in literature to show the accuracy and the effectiveness of the proposed approach.
文摘The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
文摘With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in the boundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thus getting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are in general complicated. The numerical examples were given in three dimensional elasticity, verifying the effectiveness of the proposed approach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.
基金supported by the National Natural Science Foundation of China (Grant No.10701023)and the E-Institutes of Shanghai Municipal Education Commission (Grant No.E03004)
文摘In this paper, a kind of singularly perturbed first-order differential equations with integral boundary condition are considered. With the method of boundary layer function and the Banach fixed-point theorem, the uniformly valid asymptotic solution of the original problem is obtained.
基金Project supported by the National Natural Science Foundation of China (No.10772106)
文摘A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.
文摘Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.