By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antino...By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.展开更多
The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian sta...The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian states with various non-classical properties.In this paper,the two-mode squeezing operator is derived with integral theory within the Weyl ordering product of operators using a combinatorial field in which one mode is a chaotic field and the other mode is a vacuum field.The density operator of the new light field,its entanglement property and photon number distribution are analyzed.We also note that tracing a three-mode pure state can yield this new light field.These methods represent a theoretical approach to investigating new density operators of light fields.展开更多
The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP&...The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable ...By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property we obtain new decomposition of the Fresnel operator as the product of the quadratic phase operator...By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property we obtain new decomposition of the Fresnel operator as the product of the quadratic phase operator, the squeezing operator, and the fractional Fourier transformation operator, which in turn sheds light on the matrix optics design of ABCD-systems The new decomposition for the two-mode Fresnel operator is also obtained by the use of entangled state representation.展开更多
For two unequal-mass particles,we construct the entangled state representation and then derive the corresponding squeezing operator.This squeezing operator has a natural realization in the entangled state representati...For two unequal-mass particles,we construct the entangled state representation and then derive the corresponding squeezing operator.This squeezing operator has a natural realization in the entangled state representation,which exhibits the intrinsic relation between squeezing and quantum entanglement.This squeezing operator involves both two-mode squeezing and the direct product of two single-mode squeezings.The maximum squeezing occurs when the two particles possess equal mass.When the two particles' mass difference becomes large,the component of the two single-mode squeezings becomes dominant.展开更多
Based on the Weyl expansion representation of Wigner operator and its invariant property under similar transformation,we derived the relationship between input state and output state after a unitary transformation inc...Based on the Weyl expansion representation of Wigner operator and its invariant property under similar transformation,we derived the relationship between input state and output state after a unitary transformation including Wigner function and density operator.It is shown that they can be related by a transformation matrix corresponding to the unitary evolution.In addition,for any density operator going through a dissipative channel,the evolution formula of the Wigner function is also derived.As applications,we considered further the two-mode squeezed vacuum as inputs,and obtained the resulted Wigner function and density operator within normal ordering form.Our method is clear and concise,and can be easily extended to deal with other problems involved in quantum metrology,steering,and quantum information with continuous variable.展开更多
Using the technique of integration within an ordered product of operators, we find a new kind of coherent-entangled state (CES), which exhibits both coherent and entangled state properties. The set of CESs makes up ...Using the technique of integration within an ordered product of operators, we find a new kind of coherent-entangled state (CES), which exhibits both coherent and entangled state properties. The set of CESs makes up a complete and partly nonorthogonal representation. Using a beam splitter, we propose a simple experimental scheme to produce the CES. Finally~ we present some applications of CESs in quantum optics.展开更多
We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process ca...We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian states with various non-classical properties.In this paper,the two-mode squeezing operator is derived with integral theory within the Weyl ordering product of operators using a combinatorial field in which one mode is a chaotic field and the other mode is a vacuum field.The density operator of the new light field,its entanglement property and photon number distribution are analyzed.We also note that tracing a three-mode pure state can yield this new light field.These methods represent a theoretical approach to investigating new density operators of light fields.
文摘The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金supported by the University Natural Science Foundation of Anhui Province,China (Grant No. KJ2011Z339)the National Natural Science Foundation of China (Grant No. 10874174)
文摘By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property we obtain new decomposition of the Fresnel operator as the product of the quadratic phase operator, the squeezing operator, and the fractional Fourier transformation operator, which in turn sheds light on the matrix optics design of ABCD-systems The new decomposition for the two-mode Fresnel operator is also obtained by the use of entangled state representation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975125)
文摘For two unequal-mass particles,we construct the entangled state representation and then derive the corresponding squeezing operator.This squeezing operator has a natural realization in the entangled state representation,which exhibits the intrinsic relation between squeezing and quantum entanglement.This squeezing operator involves both two-mode squeezing and the direct product of two single-mode squeezings.The maximum squeezing occurs when the two particles possess equal mass.When the two particles' mass difference becomes large,the component of the two single-mode squeezings becomes dominant.
基金Project supported by the National Natural Science Foundation of China(Grant No.11664017)the Outstanding Young Talent Program of Jiangxi Province,China(Grant No.20171BCB23034)+1 种基金the Degree and Postgraduate Education Teaching Reform Project of Jiangxi Province,China(Grant No.JXYJG-2013-027)the Science Fund of the Education Department of Jiangxi Province,China(Grant No.GJJ170184)
文摘Based on the Weyl expansion representation of Wigner operator and its invariant property under similar transformation,we derived the relationship between input state and output state after a unitary transformation including Wigner function and density operator.It is shown that they can be related by a transformation matrix corresponding to the unitary evolution.In addition,for any density operator going through a dissipative channel,the evolution formula of the Wigner function is also derived.As applications,we considered further the two-mode squeezed vacuum as inputs,and obtained the resulted Wigner function and density operator within normal ordering form.Our method is clear and concise,and can be easily extended to deal with other problems involved in quantum metrology,steering,and quantum information with continuous variable.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province,China (Grant Nos. Y2008A23 and ZR2010AQ027)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant Nos. J09LA07 and J10LA15)
文摘Using the technique of integration within an ordered product of operators, we find a new kind of coherent-entangled state (CES), which exhibits both coherent and entangled state properties. The set of CESs makes up a complete and partly nonorthogonal representation. Using a beam splitter, we propose a simple experimental scheme to produce the CES. Finally~ we present some applications of CESs in quantum optics.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(Grant Nos.11175113,11274104,and 11404108)the Natural Science Foundation of Hubei Province,China(Grant No.2011CDA021)
文摘We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.
基金Anhui Provincial Natural Science Foundation(1308085QA18)Key Project of Anhui Province (11070203010)Natural Science Project of the Education Department of Anhui Province(2012SQRL209,KJ2012Z274, 2011SQRL159)