期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
APPLICATION OF HYBRID AERO-ENGINE MODEL FOR INTEGRATED FLIGHT/PROPULSION OPTIMAL CONTROL 被引量:4
1
作者 王健康 张海波 +1 位作者 孙健国 李永进 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期16-24,共9页
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr... The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization. 展开更多
关键词 integrated flight/propulsion optimal control AERO-ENGINE hybrid model performance seeking con- trol sequential quadratic programming
下载PDF
Performance analysis of semi-active cab’s hydraulic system of the vibratory roller using optimal fuzzy-PID control 被引量:1
2
作者 Nguyen Van Liem Zhang Jianrun +1 位作者 Wu Zhenpeng Yang Xiuzhi 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期399-407,共9页
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the veh... In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling. 展开更多
关键词 vibratory roller off-road terrains semi-active cab’s hydraulic system optimal fuzzy-PID(proportional integral derivative)control
下载PDF
Fast Solvers of Fredholm Optimal Control Problems
3
作者 Mario Annunziato Alfio Borzi 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期431-448,共18页
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of ... The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments. 展开更多
关键词 optimal control theory Fredholm integral equations of second kind iterative methods
下载PDF
Aerodynamic/control integrated optimization method for unpowered high-speed vehicle configuration design
4
作者 Xin PAN Linlin WANG +2 位作者 Li LI Lulu JIANG Gang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期153-167,共15页
The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspa... The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system. 展开更多
关键词 Aerodynamic/control Integrated Optimization MDO High-speed vehicle Shape Optimization controllability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部