El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope...El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.展开更多
Abstract:The development of China’s human rights path is driv-en by both external and internal factors,influenced by general prin-ciples of human rights worldwide while also following China’s own endogenous logic.Th...Abstract:The development of China’s human rights path is driv-en by both external and internal factors,influenced by general prin-ciples of human rights worldwide while also following China’s own endogenous logic.The concept of the“Two Integrations”reflects the continuous theoretical innovation of the Chinese Communist Party based on China’s national conditions,significantly illustrating the en-dogenous logic of China’s human rights path.Among these,the“basic principles of Marxism”occupy a“core”position within the endoge-nous logic of China’s human rights path,and to some extent,embody an understanding of the inherent laws of human rights.Meanwhile,“China’s specific realities”and“fine traditional Chinese culture”serve as the“living water sources”for the ongoing advancement of China’s human rights.The“Two Integrations”represent an intrinsic requirement of historical materialism and practical materialism.The logical structure of“One Core,Two Sources”explains the endogenous nature of China’s human rights path,offering both an interpretation of the driving forces behind China’s human rights path and a defense of its rationality.展开更多
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni...Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.展开更多
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p...Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future....High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
In an address at a meeting on cultural inheritance and development,General Secretary Xi Jinping noted,“Given the rich foundations of our more than 5,000-year-old civilization,the only path for pioneering and developi...In an address at a meeting on cultural inheritance and development,General Secretary Xi Jinping noted,“Given the rich foundations of our more than 5,000-year-old civilization,the only path for pioneering and developing socialism with Chinese characteristics is to integrate the basic tenets of Marxism with China’s specific realities and with its traditional culture.This systematic conclusion,drawn from our explorations of Chinese socialism is the strongest assurance for our success.”In his speech,General Secretary Xi incisively discussed the significance of integrating the basic tenets of Marxism with China’s specific realities and traditional culture(referred to as the“two integrations”)and the rich implications and practical requirements therein.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separa...Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.展开更多
Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-...Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrabl...This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.展开更多
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on...Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on phytoplankton remains unclear.In this study,the spatial and temporal variations of phytoplankton in Sanggou Bay were investigated seasonally based on 21 sampling sites covering three cultivation zones(bivalve zone,IMTA zone,and kelp zone)and one control zone(without aquatic cultivation).In total,128 phytoplankton species,with diatoms and dinoflagellates as the dominant groups,were obtained across the whole year,and the mean Shannon diversity index(H')and species richness(SR)were determined as 1.39 and 9.39,respectively.The maximum chlorophyll a(Chl-a)(6.32μg L^(-1))and plankton diversity(H'of 1.97)occurred in summer and autumn,respectively.Compared to other zones,the bivalve zone displayed significantly higher Chl-a and lower H'in majority of time.Pairwise PERMANOVA analysis indicated that the phytoplankton assemblage in the bivalve zone was significantly different with the control and kelp zones,while the IMTA zone maintained close to other three zones.Based on generalized additive models,temperature,NO_(2)^(-)-N,N/P ratio,SiO_(3)^(2-)-Si,and salinity were determined as the key factors underlying Chl-a and phytoplankton diversity.Addi-tionally,the results of redundancy analysis further indicated that the phytoplankton assemblage in the bivalve zone is positively re-lated with nutrients such as NO_(3)^(-)-N and NH_(4)^(+)-N as well as water depth,while the phytoplankton assemblages in the kelp,control,and IMTA zones are associated with NO_(2)^(-)-N,SiO_(3)^(2-)-Si,and salinity.Taken all observations into consideration together,it can be inferred that IMTA can effectively reduce Chl-a level compared to bivalve monoculture by reducing the nutrients.However,the SR,H’,and species composition of phytoplankton are primarily determined by local environment factors such as temperature,water depth,salinity and SiO_(3)^(2-)-Si.展开更多
As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning ...As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning carbon-based semiconductor technology has become one of the most disruptive technologies in the post-Moore era.As one-dimensional nanomaterials,carbon nanotubes(CNTs)are far superior to silicon at the same technology nodes of FETs because of their excellent electrical transport and scaling properties,rendering them the most competitive material in the next-generation ICs technology.However,certain challenges impede the industrialization of CNTs,particularly in terms of material preparation,which significantly hinders the development of CNT-based ICs.Focusing on CNT-based ICs technology,this review summarizes its main technical status,development trends,existing challenges,and future development directions.展开更多
In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suita...In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suitable addition of correction terms,while keeping the first order accuracy in H~γ×H^(γ+1)for initial data in H^(γ+1)×H^(γ+1)withγ>1.The main theorem is that,up to some fixed time T,there exist constantsτ_(0)and C depending only on T and‖u‖_(L^(∞)((0,T);H^(γ+1)))such that,for any 0<τ≤τ_(0),we have that‖u(t_(n),·)-u^(n)‖H_γ≤C_(τ),‖v(t_(n),·)-v^(n)‖_(Hγ+1)≤C_(τ),where u^(n)and v^(n)denote the numerical solutions at t_(n)=nτ.Moreover,the mass of the numerical solution M(u^(n))satisfies that|M(u^(n))-M(u_0)|≤Cτ~5.展开更多
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t...The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.展开更多
基金supported by the National Natural Science Foundation of China(NFSCGrant No.42030410)+2 种基金Laoshan Laboratory(No.LSKJ202202402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST.
文摘El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.
基金the General Project under the National Social Sci-ence Fund of China,“A Political and Philosophical Research on the Concept of a Global Community from the Perspective of the Common Values of All Mankind”(Project Approval Number 22BZX009)the Project of the Asia Research Center in Nankai University(Project Approval Number AS2120).
文摘Abstract:The development of China’s human rights path is driv-en by both external and internal factors,influenced by general prin-ciples of human rights worldwide while also following China’s own endogenous logic.The concept of the“Two Integrations”reflects the continuous theoretical innovation of the Chinese Communist Party based on China’s national conditions,significantly illustrating the en-dogenous logic of China’s human rights path.Among these,the“basic principles of Marxism”occupy a“core”position within the endoge-nous logic of China’s human rights path,and to some extent,embody an understanding of the inherent laws of human rights.Meanwhile,“China’s specific realities”and“fine traditional Chinese culture”serve as the“living water sources”for the ongoing advancement of China’s human rights.The“Two Integrations”represent an intrinsic requirement of historical materialism and practical materialism.The logical structure of“One Core,Two Sources”explains the endogenous nature of China’s human rights path,offering both an interpretation of the driving forces behind China’s human rights path and a defense of its rationality.
基金This work is financially supported by the National Natural Science Foundation of China(52303036)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297028)+4 种基金the Guangxi Science and Technology Base and Talent Special Project(GUIKE AD23026179)the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019)the Natural Science Foundation of Sichuan Province(2023NSFSC0986)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Sklpme2023-3-18).
文摘Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
基金supported by the National Natural Science Foundation of China(21978013)the Fundamental Research Funds for the Central in China(XK1802-4)。
文摘Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金supported by the National Natural Science Foundation of China (Nos.52174277 and 52204309)the China Postdoctoral Science Foundation (No.2022M720683).
文摘High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘In an address at a meeting on cultural inheritance and development,General Secretary Xi Jinping noted,“Given the rich foundations of our more than 5,000-year-old civilization,the only path for pioneering and developing socialism with Chinese characteristics is to integrate the basic tenets of Marxism with China’s specific realities and with its traditional culture.This systematic conclusion,drawn from our explorations of Chinese socialism is the strongest assurance for our success.”In his speech,General Secretary Xi incisively discussed the significance of integrating the basic tenets of Marxism with China’s specific realities and traditional culture(referred to as the“two integrations”)and the rich implications and practical requirements therein.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金This research was supported by the European Union’s Horizon 2020 research and innovation scheme under the Marie Skłodowska-Curie grant agreement No.801342(Tecniospring INDUSTRYGrant:TECSPR-19-1-0003)+4 种基金the Ministry of Science and Innovation,Spain(Grants:PID2020-113320RB-I00,PID2020-113493RB-I00,RYC2021-034546-I and RYC2021-034764-I)the Catalan Agency for Management of University and Research Grants,Regional Government of Catalonia,Spain(Grants:2017-SGR-1229 and 2021-SGR-00900)the Seneca Foundation,Regional Government of Murcia,Spain(Grant:21935/PI/22)La Marato de TV3 Foundation(Grant:214/857-202039)and the Catalan Institution for Research and Advanced Studies(ICREA).
文摘Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.
基金Supported by the National Natural Science Foundation of China(11871191)the Science Foundation of Hebei Province(A2023205006,A2019106037)+2 种基金the Key Development Foundation of Hebei Normal University in2024(L2024ZD08)the Graduate Student Innovation Project Fund of Hebei Province(CXZZBS2022066)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574153)the Foundation of the Ministry of Industry and Information Technology of China(Grant No.TSXK2022D007)。
文摘This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
基金supported by the National Science and Technology Basic Resources Investigation Program of China(No.2018FY100206)the National Natural Science Foundation of China(Nos.31902370 and 42276099)+2 种基金the Ningbo Public Welfare Science and Technology Program(No.2022S161)the Key Program of Science and Technology Innovation in Ningbo(No.2023Z118)the National Key Research and Development Program of China(No.2018YFD0900703).
文摘Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on phytoplankton remains unclear.In this study,the spatial and temporal variations of phytoplankton in Sanggou Bay were investigated seasonally based on 21 sampling sites covering three cultivation zones(bivalve zone,IMTA zone,and kelp zone)and one control zone(without aquatic cultivation).In total,128 phytoplankton species,with diatoms and dinoflagellates as the dominant groups,were obtained across the whole year,and the mean Shannon diversity index(H')and species richness(SR)were determined as 1.39 and 9.39,respectively.The maximum chlorophyll a(Chl-a)(6.32μg L^(-1))and plankton diversity(H'of 1.97)occurred in summer and autumn,respectively.Compared to other zones,the bivalve zone displayed significantly higher Chl-a and lower H'in majority of time.Pairwise PERMANOVA analysis indicated that the phytoplankton assemblage in the bivalve zone was significantly different with the control and kelp zones,while the IMTA zone maintained close to other three zones.Based on generalized additive models,temperature,NO_(2)^(-)-N,N/P ratio,SiO_(3)^(2-)-Si,and salinity were determined as the key factors underlying Chl-a and phytoplankton diversity.Addi-tionally,the results of redundancy analysis further indicated that the phytoplankton assemblage in the bivalve zone is positively re-lated with nutrients such as NO_(3)^(-)-N and NH_(4)^(+)-N as well as water depth,while the phytoplankton assemblages in the kelp,control,and IMTA zones are associated with NO_(2)^(-)-N,SiO_(3)^(2-)-Si,and salinity.Taken all observations into consideration together,it can be inferred that IMTA can effectively reduce Chl-a level compared to bivalve monoculture by reducing the nutrients.However,the SR,H’,and species composition of phytoplankton are primarily determined by local environment factors such as temperature,water depth,salinity and SiO_(3)^(2-)-Si.
基金supported by National Natural Science Foundation of China(Grant No.52022078)Shaanxi Provincial Key Research and Development Program(Grant No.2021ZDLGY10-02,2019ZDLGY01-09)。
文摘As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning carbon-based semiconductor technology has become one of the most disruptive technologies in the post-Moore era.As one-dimensional nanomaterials,carbon nanotubes(CNTs)are far superior to silicon at the same technology nodes of FETs because of their excellent electrical transport and scaling properties,rendering them the most competitive material in the next-generation ICs technology.However,certain challenges impede the industrialization of CNTs,particularly in terms of material preparation,which significantly hinders the development of CNT-based ICs.Focusing on CNT-based ICs technology,this review summarizes its main technical status,development trends,existing challenges,and future development directions.
基金supported by the NSFC(11901120)supported by the NSFC(12171356)the Science and Technology Program of Guangzhou,China(2024A04J4027)。
文摘In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suitable addition of correction terms,while keeping the first order accuracy in H~γ×H^(γ+1)for initial data in H^(γ+1)×H^(γ+1)withγ>1.The main theorem is that,up to some fixed time T,there exist constantsτ_(0)and C depending only on T and‖u‖_(L^(∞)((0,T);H^(γ+1)))such that,for any 0<τ≤τ_(0),we have that‖u(t_(n),·)-u^(n)‖H_γ≤C_(τ),‖v(t_(n),·)-v^(n)‖_(Hγ+1)≤C_(τ),where u^(n)and v^(n)denote the numerical solutions at t_(n)=nτ.Moreover,the mass of the numerical solution M(u^(n))satisfies that|M(u^(n))-M(u_0)|≤Cτ~5.
基金Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos.2019YFE03040002 and 2018YFE0301101)the Talent Project of China National Nuclear Corporation,China (Grant No.2022JZYF-01)。
文摘The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.