This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differ...Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differentiate between legal and malicious modifications. In this paper, we introduce a novel lossless semi-fragile scheme based on prediction-error expansion for content protection of relational database. In the proposed method, all attributes in a database relation are first classified according to their sensitivity to legitimate updates. Then, the watermark is embedded by expanding the prediction error of the two least significant digits of securely selected attributes. At watermark extraction, the proposed method has the ability to fully restore the original data while detecting and localizing tampering. The applicability of our method is demonstrated theoretically and experimentally.展开更多
A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered de...A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.展开更多
In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating c...In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.展开更多
Controller tuning is the correct setting of controller parameters to control complex dynamic systems appropriately and with high accuracy.Therefore,this study addressed the development of a method for tuning the headi...Controller tuning is the correct setting of controller parameters to control complex dynamic systems appropriately and with high accuracy.Therefore,this study addressed the development of a method for tuning the heading controller of an unmanned surface vehicle(USV)based on the backstepping integral technique to enhance the vehicle behavior while tracking a desired position for water monitoring missions.The vehicle self-steering system(autopilot system)is designed theoretically and tested via a simulation.Based on the Lyapunov theory,the stability in the closed-loop system is guaranteed,and the convergence of the heading tracking errors is obtained.In addition,the designed control law is implemented via a microcontroller and tested experimentally in real time.Conclusion,experimental results were carried out to verify the robustness of the designed controller when disturbances and uncertainties are introduced into the system.展开更多
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele...This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.展开更多
Kiwifruit canker disease seriously affects the yield and quality of"Guichang"kiwifruit in Xiuwen County,Guizhou Province.In order to scientifically,safely,greenly and efficiently prevent and control the dise...Kiwifruit canker disease seriously affects the yield and quality of"Guichang"kiwifruit in Xiuwen County,Guizhou Province.In order to scientifically,safely,greenly and efficiently prevent and control the disease,theory was combined with prevention and control techniques to optimize existing prevention and control techniques,so as to improve the production yield and quality of kiwifruit.Specifically,biocontrol strains targeting local kiwifruit canker disease were screened,and reduced and mixed use of agrochemicals with improved efficiency was studied;and the effects and application techniques of disease resistance inducers and bioorganic fertilizers in inducing systemic disease resistance in kiwifruit trees were explored,and finally,an integrated green prevention and control scheme for kiwifruit canker disease that is suitable for kiwifruit production areas in Guizhou Province and has strong operability was proposed.This study provides technical support for green,efficient,standardized production technical services and sustainable and healthy development of kiwifruit industry.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
During the drilling process,stick-slip vibration of the drill string is mainly caused by the nonlinear friction gen-erated by the contact between the drill bit and the rock.To eliminate the fatigue wear of downhole dr...During the drilling process,stick-slip vibration of the drill string is mainly caused by the nonlinear friction gen-erated by the contact between the drill bit and the rock.To eliminate the fatigue wear of downhole drilling tools caused by stick-slip vibrations,the Fractional-Order Proportional-Integral-Derivative(FOPID)controller is used to suppress stick-slip vibrations in the drill string.Although the FOPID controller can effectively suppress the drill string stick-slip vibration,its structure isflexible and parameter setting is complicated,so it needs to use the cor-responding machine learning algorithm for parameter optimization.Based on the principle of torsional vibration,a simplified model of multi-degree-of-freedom drill string is established and its block diagram is designed.The continuous nonlinear friction generated by cutting rock is described by the LuGre friction model.The adaptive learning strategy of genetic algorithm(GA),particle swarm optimization(PSO)and particle swarm optimization improved(IPSO)by arithmetic optimization(AOA)is used to optimize and adjust the controller parameters,and the drill string stick-slip vibration is suppressed to the greatest extent.The results show that:When slight drill string stick-slip vibration occurs,the FOPID controller optimized by machine learning algorithm has a good effect on suppressing drill string stick-slip vibration.However,the FOPID controller cannot get the drill string system which has fallen into serious stick-slip vibration(stuck pipe)out of trouble,and the machine learning algorithm is required to mark a large amount of data on adjacent Wells to train the model.Set a reasonable range of drilling parameters(weight on bit/drive torque)in advance to avoid severe stick-slip vibration(stuck pipe)in the drill string system.展开更多
Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signal...Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.展开更多
Eupatorium adenophorum Spreng. was introduced in Yunnan Province of China around 1940. Since then it has been spreading rapidly, particularly in the southern and southwestern parts of China and caused serious economic...Eupatorium adenophorum Spreng. was introduced in Yunnan Province of China around 1940. Since then it has been spreading rapidly, particularly in the southern and southwestern parts of China and caused serious economic loss. The biological research and inte-grated control on E. adenophorum were carried out from 1980's in Yunnan Province. Together with other 15 invasive external species, the weed has been listed in the White Paper by The State Environmental Protection Administration of China. This paper briefly reviews the studies on natural distribution, biological character, ecological character, chemical component, hazard, potential application and the control of E. adenophorum. The research direction for this invasive external species in future was also discussed.展开更多
This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed ...This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.展开更多
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr...The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.展开更多
To reduce shock during transmission gear shift, a transmission torque feedback closed loop control system is proposed based on the powertrain system model and a torque observer. The ignition time of engine was delaye...To reduce shock during transmission gear shift, a transmission torque feedback closed loop control system is proposed based on the powertrain system model and a torque observer. The ignition time of engine was delayed to reduce transmission output shaft torque during gear shift. In contrast to traditional control method, the closed loop control system based on torque observer can obviously reduce the transmission output shaft torque during gear shift. It can be concluded that by way of torque feedback closed loop control, transmission shift shock can be reduced.展开更多
An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good p...An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs.展开更多
[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using ...[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using fixed system survey method, with fruit fly attractants as the materials, the occurrence dynamic of oriental fruit fly adult in guava orchard was investigated. The control effects of the methods such as fruit fly attractants, fruit bagging, cleaning park to pick up fallen fruit and timely spraying pesticide against the pest were also studied. [ Result] Oriental fruit fly had two damage peak periods in Nanning region of Guangxi Prov- ince (May to June, August to September). Through the integrated control measures of trapping agent for male flies, timely spraying, fruit bagging and cleaning park to pick up fallen fruit, the population density in guava orchard dropped significantly. The fruit damage rates of guava in research base were only 6.67% -7.33% during the peak period of oriental fruit fly in June 2008, while they were 90.53% -98.00% in control area, obtaining good control effect against the pest. [ Con- dttalon ] The method used in the study preliminarily restored the yield losses of guava, which also provided basis for the preparation of overall strategy against orien- tal fruit fly in the region.展开更多
Western grassland is the main source of living and means of production of western inhabitants. For many years, desertification and poisonous-weeds growth in grassland were resulted from over-grazing, over-reclaiming, ...Western grassland is the main source of living and means of production of western inhabitants. For many years, desertification and poisonous-weeds growth in grassland were resulted from over-grazing, over-reclaiming, over-spading and population growth. Western natural ecological environment is destroyed severly. Meanwhile, it has restricted the sustainable development of animal husbandry. The fast spreading poisonous-weeds, which caused grassland ecology unbalance, is one of the considerable bioecology problems and an important index of grassland degeneration. Based on analysis and induction of previous data, this article introduced the situation of poisonous-weeds disaster of western grassland in recent decades, category and distribution of poisonous-weeds, integrated control and reasonable utilization.展开更多
The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great...The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.展开更多
Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one contro...Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one control method to improve the other. Moreover, many experiments are needed to improve the robustness; therefore, these control methods are underutilized. This paper proposes an integrated control system specially designed for multi-axle vehicles, in which the desired lateral force and yaw moment of vehicles are determined by the sliding mode control algorithm. The output of the sliding mode control is distributed to the suitable wheels based on the abilities and potentials of the two control methods. Moreover, in this method, fewer experiments are needed, and the robustness and simultaneity are both guaranteed. To simplify the optimization system and to improve the computation speed, seven simple optimization subsystems are designed for the determination of control outputs on each wheel. The simulation results show that the proposed controller obviously enhances the stability of multi-axle trucks. The system improves 68% of the safe velocity, and its performance is much better than both di erential braking and active steering. This research proposes an integrated control system that can simultaneously invoke di erential braking and active steering of multi-axle vehicles to fully utilize the abilities and potentials of the two control methods.展开更多
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
文摘Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differentiate between legal and malicious modifications. In this paper, we introduce a novel lossless semi-fragile scheme based on prediction-error expansion for content protection of relational database. In the proposed method, all attributes in a database relation are first classified according to their sensitivity to legitimate updates. Then, the watermark is embedded by expanding the prediction error of the two least significant digits of securely selected attributes. At watermark extraction, the proposed method has the ability to fully restore the original data while detecting and localizing tampering. The applicability of our method is demonstrated theoretically and experimentally.
基金Supported by National Key R&D Program of China (Grant No.2018YFB2000702)National Natural Science Foundation of China (Grant No.52075262)Fok Ying-Tong Education Foundation of China (Grant No.171044)。
文摘A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.
基金supported in part by National Key R&D Program of China(2019YFE0196400)Key Research and Development Program of Shaanxi(2022KWZ09)+4 种基金National Natural Science Foundation of China(61771358,61901317,62071352)Fundamental Research Funds for the Central Universities(JB190104)Joint Education Project between China and Central-Eastern European Countries(202005)the 111 Project(B08038)。
文摘In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.
文摘Controller tuning is the correct setting of controller parameters to control complex dynamic systems appropriately and with high accuracy.Therefore,this study addressed the development of a method for tuning the heading controller of an unmanned surface vehicle(USV)based on the backstepping integral technique to enhance the vehicle behavior while tracking a desired position for water monitoring missions.The vehicle self-steering system(autopilot system)is designed theoretically and tested via a simulation.Based on the Lyapunov theory,the stability in the closed-loop system is guaranteed,and the convergence of the heading tracking errors is obtained.In addition,the designed control law is implemented via a microcontroller and tested experimentally in real time.Conclusion,experimental results were carried out to verify the robustness of the designed controller when disturbances and uncertainties are introduced into the system.
文摘This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.
基金Supported by Science and Technology Support Program of Guizhou Province(QKHZC[2020]1Y135)General Higher Education Science and Technology Top-notch Talents Project of Guizhou Province(QJH KY Z[2021]037)+5 种基金Science and Technology Program of Guizhou Province(QKHJZ-ZK[2022]ZD 025)High-level Talent Scientific Research Startup Project of Guizhou Institute of Technology(XJGC20190632)Earth Thesis Project of Guizhou Institute of Technology(KJZX20-005)High-Level Talent Initial Funding of Guizhou Industry Polytechnic College(2023-RC-01)Enterprise Commissioned Project of Guizhou Industrial Polytechnic College(2023-HX-01)Enterprise Commissioned Project of Guizhou Industrial Polytechnic College(2023-HX-02).
文摘Kiwifruit canker disease seriously affects the yield and quality of"Guichang"kiwifruit in Xiuwen County,Guizhou Province.In order to scientifically,safely,greenly and efficiently prevent and control the disease,theory was combined with prevention and control techniques to optimize existing prevention and control techniques,so as to improve the production yield and quality of kiwifruit.Specifically,biocontrol strains targeting local kiwifruit canker disease were screened,and reduced and mixed use of agrochemicals with improved efficiency was studied;and the effects and application techniques of disease resistance inducers and bioorganic fertilizers in inducing systemic disease resistance in kiwifruit trees were explored,and finally,an integrated green prevention and control scheme for kiwifruit canker disease that is suitable for kiwifruit production areas in Guizhou Province and has strong operability was proposed.This study provides technical support for green,efficient,standardized production technical services and sustainable and healthy development of kiwifruit industry.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金This research was funded by the National Natural Science Foundation of China(51974052)(51804061)the Chongqing Research Program of Basic Research and Frontier Technology(cstc2019jcyj-msxmX0199).
文摘During the drilling process,stick-slip vibration of the drill string is mainly caused by the nonlinear friction gen-erated by the contact between the drill bit and the rock.To eliminate the fatigue wear of downhole drilling tools caused by stick-slip vibrations,the Fractional-Order Proportional-Integral-Derivative(FOPID)controller is used to suppress stick-slip vibrations in the drill string.Although the FOPID controller can effectively suppress the drill string stick-slip vibration,its structure isflexible and parameter setting is complicated,so it needs to use the cor-responding machine learning algorithm for parameter optimization.Based on the principle of torsional vibration,a simplified model of multi-degree-of-freedom drill string is established and its block diagram is designed.The continuous nonlinear friction generated by cutting rock is described by the LuGre friction model.The adaptive learning strategy of genetic algorithm(GA),particle swarm optimization(PSO)and particle swarm optimization improved(IPSO)by arithmetic optimization(AOA)is used to optimize and adjust the controller parameters,and the drill string stick-slip vibration is suppressed to the greatest extent.The results show that:When slight drill string stick-slip vibration occurs,the FOPID controller optimized by machine learning algorithm has a good effect on suppressing drill string stick-slip vibration.However,the FOPID controller cannot get the drill string system which has fallen into serious stick-slip vibration(stuck pipe)out of trouble,and the machine learning algorithm is required to mark a large amount of data on adjacent Wells to train the model.Set a reasonable range of drilling parameters(weight on bit/drive torque)in advance to avoid severe stick-slip vibration(stuck pipe)in the drill string system.
基金This research was jointly supported by the National Natural Science Foundation of China[Grant 62203468]the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)[Grant 2022QNRC001]+1 种基金the Technological Research and Development Program of China Railway Corporation Limited[Grant K2021X001]by the Foundation of China Academy of Railway Sciences Corporation Limited[Grant 2021YJ043].On behalf all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.
基金This study was supported by Project of Chinese Academy of Science Knowledge Innovation Program (KSCX1-SW-13-0X-0X) and National Natural Science Foundation of China (30470337)
文摘Eupatorium adenophorum Spreng. was introduced in Yunnan Province of China around 1940. Since then it has been spreading rapidly, particularly in the southern and southwestern parts of China and caused serious economic loss. The biological research and inte-grated control on E. adenophorum were carried out from 1980's in Yunnan Province. Together with other 15 invasive external species, the weed has been listed in the White Paper by The State Environmental Protection Administration of China. This paper briefly reviews the studies on natural distribution, biological character, ecological character, chemical component, hazard, potential application and the control of E. adenophorum. The research direction for this invasive external species in future was also discussed.
基金Major Program of National Natural Science Founda-tion of China (60710002)Program for Changjiang Scholars and Innovative Research Team in University
文摘This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.
基金Supported by the Aeronautical Science Foundation of China(2010ZB52011)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11-0213)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010055)~~
文摘The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.
文摘To reduce shock during transmission gear shift, a transmission torque feedback closed loop control system is proposed based on the powertrain system model and a torque observer. The ignition time of engine was delayed to reduce transmission output shaft torque during gear shift. In contrast to traditional control method, the closed loop control system based on torque observer can obviously reduce the transmission output shaft torque during gear shift. It can be concluded that by way of torque feedback closed loop control, transmission shift shock can be reduced.
基金Supported by the National Natural Science Foundation of China(50675098,50735002)~~
文摘An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs.
基金Supported by Educational Commission of Guangxi Province of China (GJR(2007)No.70)~~
文摘[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using fixed system survey method, with fruit fly attractants as the materials, the occurrence dynamic of oriental fruit fly adult in guava orchard was investigated. The control effects of the methods such as fruit fly attractants, fruit bagging, cleaning park to pick up fallen fruit and timely spraying pesticide against the pest were also studied. [ Result] Oriental fruit fly had two damage peak periods in Nanning region of Guangxi Prov- ince (May to June, August to September). Through the integrated control measures of trapping agent for male flies, timely spraying, fruit bagging and cleaning park to pick up fallen fruit, the population density in guava orchard dropped significantly. The fruit damage rates of guava in research base were only 6.67% -7.33% during the peak period of oriental fruit fly in June 2008, while they were 90.53% -98.00% in control area, obtaining good control effect against the pest. [ Con- dttalon ] The method used in the study preliminarily restored the yield losses of guava, which also provided basis for the preparation of overall strategy against orien- tal fruit fly in the region.
基金funded by National Nature Science Foundation of China(31072175)Tibet Project Supported by Ministry of Agriculture of the People's Republic of China(20071010)
文摘Western grassland is the main source of living and means of production of western inhabitants. For many years, desertification and poisonous-weeds growth in grassland were resulted from over-grazing, over-reclaiming, over-spading and population growth. Western natural ecological environment is destroyed severly. Meanwhile, it has restricted the sustainable development of animal husbandry. The fast spreading poisonous-weeds, which caused grassland ecology unbalance, is one of the considerable bioecology problems and an important index of grassland degeneration. Based on analysis and induction of previous data, this article introduced the situation of poisonous-weeds disaster of western grassland in recent decades, category and distribution of poisonous-weeds, integrated control and reasonable utilization.
基金supported by National Natural Science Foundation of China(Grant No.51675440)Fundamental Research Funds for the Central Universities of China(Grant no.3102018gxc025)
文摘The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.
基金National Natural Science Foundation of China(Grant No.51505178)China Postdoctoral Science Foundation(Grant No.2014M561289)
文摘Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one control method to improve the other. Moreover, many experiments are needed to improve the robustness; therefore, these control methods are underutilized. This paper proposes an integrated control system specially designed for multi-axle vehicles, in which the desired lateral force and yaw moment of vehicles are determined by the sliding mode control algorithm. The output of the sliding mode control is distributed to the suitable wheels based on the abilities and potentials of the two control methods. Moreover, in this method, fewer experiments are needed, and the robustness and simultaneity are both guaranteed. To simplify the optimization system and to improve the computation speed, seven simple optimization subsystems are designed for the determination of control outputs on each wheel. The simulation results show that the proposed controller obviously enhances the stability of multi-axle trucks. The system improves 68% of the safe velocity, and its performance is much better than both di erential braking and active steering. This research proposes an integrated control system that can simultaneously invoke di erential braking and active steering of multi-axle vehicles to fully utilize the abilities and potentials of the two control methods.