In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the...In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the experiment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L-1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand(COD), ammonia nitrogen(NH4+-N), total nitrogen(TN), and total phosphorus(TP) was 98.2%, 95.7%, 95.6%, and 96.2% at effluent concentrations of COD85.6 mg·L-1, NH4+-N 35.22 mg·L-1, TN 44.64 mg·L-1, and TP 1.13 mg·L-1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L-1and TN 34 mg·L-1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the filler surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment(15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.展开更多
Frequent variations of the wastewater quality and quantity and other uncertain factors are the challenges faced by many wastewater treatment plants during the operation. Sequencing batch biofilm reactor( SBBR) proce...Frequent variations of the wastewater quality and quantity and other uncertain factors are the challenges faced by many wastewater treatment plants during the operation. Sequencing batch biofilm reactor( SBBR) process provides a new idea for an effective solution to this problem. This paper introduces the basic processes and characteristics of the sequencing batch biofilm reactor( SBBR) process,and summarizes the research status of this process in wastewater treatment. Factors affecting the nitrogen and phosphorus removal effect of the SBBR process are also analyzed.展开更多
The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor(SBR).The SBR for municipal wastewate...The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor(SBR).The SBR for municipal wastewater treatment was operated in sequences:filling,anaerobic,oxic,anoxic,oxic,settling and discharge.The reactor was equipped with on-line monitoring sensors for dissolved oxygen(DO),oxidation-reduction potential(ORP)and pH.The variation of DO,ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR.The characteristic points of DO,ORP and pH can be used to judge and control the stages of process that include:phosphate release by the turning points of ORP and pH;nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP;denitrification by the nitrate knee of ORP and nitrate apex of pH;phosphate uptake by the turning point of pH;and residual organic carbon oxida-tion by the carbon elbows of DO and ORP.The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.展开更多
基金Supported by the Beijing Municipal Science and Technology Program(Z121100001512008)
文摘In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the experiment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L-1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand(COD), ammonia nitrogen(NH4+-N), total nitrogen(TN), and total phosphorus(TP) was 98.2%, 95.7%, 95.6%, and 96.2% at effluent concentrations of COD85.6 mg·L-1, NH4+-N 35.22 mg·L-1, TN 44.64 mg·L-1, and TP 1.13 mg·L-1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L-1and TN 34 mg·L-1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the filler surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment(15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.
文摘Frequent variations of the wastewater quality and quantity and other uncertain factors are the challenges faced by many wastewater treatment plants during the operation. Sequencing batch biofilm reactor( SBBR) process provides a new idea for an effective solution to this problem. This paper introduces the basic processes and characteristics of the sequencing batch biofilm reactor( SBBR) process,and summarizes the research status of this process in wastewater treatment. Factors affecting the nitrogen and phosphorus removal effect of the SBBR process are also analyzed.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50138010)Key Laboratory Open Foundation of Beijing.
文摘The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor(SBR).The SBR for municipal wastewater treatment was operated in sequences:filling,anaerobic,oxic,anoxic,oxic,settling and discharge.The reactor was equipped with on-line monitoring sensors for dissolved oxygen(DO),oxidation-reduction potential(ORP)and pH.The variation of DO,ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR.The characteristic points of DO,ORP and pH can be used to judge and control the stages of process that include:phosphate release by the turning points of ORP and pH;nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP;denitrification by the nitrate knee of ORP and nitrate apex of pH;phosphate uptake by the turning point of pH;and residual organic carbon oxida-tion by the carbon elbows of DO and ORP.The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.