In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presente...In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presented.The improved tangential displacement evaluation in the present implementation of the discrete element method has been derived and implemented to preserve the consistency of the correct time level evaluation during the time integration process in calculating the algorithmic tangential displacement.Several numerical examples have been used to validate the proposed tangential displacement evaluation;this is in contrast to past practices which only seem to attain the first-order time accuracy due to inconsistent time level implementation with different algorithms for normal and tangential directions.The comparisons with the existing implementation and the superiority of the proposed implementation are given in terms of the convergence rate with improved numerical accuracy in time.Moreover,several schemes via the unified second-order time integrators within the framework of the GSSSS family have been carried out based on the proposed correct implementation.All the numerical results demonstrate that using the existing state-of-the-art implementation reduces the time accuracy to be first-order accurate in time,while the proposed implementation preserves the correct time accuracy to yield second-order.展开更多
The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of ma...The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.展开更多
In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplect...In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrodinger equations with variable coefficients, cubic nonlinear Schrodinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.展开更多
N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been d...N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used;see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error growth for different numerical integrators. Throughout the paper, the error growth is examined in terms of the global errors in the positions and velocities, and the relative errors in the energy and angular momentum of the system. We performed numerical experiments for the different integrators applied to the Jovian problem over a long interval of duration, as long as one million years, with the local error tolerance ranging from 10-16 to 10-18.展开更多
ZTE Corporation has signed strategic telecommunications software agreement with two leading providers in Europe and Latin America to optimize its offerings for target customers in
Two new fourth-order three-stage symplectic integrators are specifically designed for a family of Hamiltonian systems,such as the harmonic oscillator,mathematical pendulum and latticeφ4 model.When the nonintegrable l...Two new fourth-order three-stage symplectic integrators are specifically designed for a family of Hamiltonian systems,such as the harmonic oscillator,mathematical pendulum and latticeφ4 model.When the nonintegrable latticeφ4 system is taken as a test model,numerical comparisons show that the new methods have a great advantage over the second-order Verlet symplectic integrators in the accuracy of energy,become explicitly better than the usual non-gradient fourth-order seven-stage symplectic integrator of Forest and Ruth,and are almost equivalent to a fourth-order seven-stage force gradient symplectic integrator of Chin.As the most important advantage,the new integrators are convenient for solving the variational equations of many Hamiltonian systems so as to save a great deal of the computational cost when scanning a lot of orbits for chaos.展开更多
A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplec...A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.展开更多
Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequen...Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.展开更多
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for appli...This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.展开更多
For the problem of set point regulation of the liquid level in coupled tank systems, we present a continuous sliding mode control(SMC) with a "conditional integrator", which only provides integral action ins...For the problem of set point regulation of the liquid level in coupled tank systems, we present a continuous sliding mode control(SMC) with a "conditional integrator", which only provides integral action inside the boundary layer. For a special choice of the controller parameters, our design can be viewed as a PID controller with anti-windup and achieves robust regulation.The proposed controller recovers the transient response performance without control chattering. Both full-state feedback as well as output-feedback designs are presented in this work. Our output-feedback design uses a high-gain observer(HGO) which recovers the performance of a state-feedback design where plant parameters are assumed to be known. We consider both interacting as well as non-interacting tanks and analytical results for stability and transient performance are presented in both the cases. The proposed controller continuous SMC with conditional integrators(CSMCCI) provides superior results in terms of the performance measures as well as performance indices than ideal SMC, continuous SMC(CSMC) and continuous SMC with conventional integrator(CSMCI). Experimental results demonstrate good tracking performance in spite of unmodeled dynamics and disturbances.展开更多
We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy ...We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.展开更多
Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t...Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.展开更多
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni...Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.展开更多
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p...Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality.展开更多
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p...Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.展开更多
Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can...Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can greatly affect the cost of battery production. Up to now, lithium ion battery producers still adopt manufacturing methods with cumbersome sub-components preparing processes and costly assembling procedures, which will undoubtedly elevate the producing cost. Herein, we propose a novel approach to directly assemble battery components(cathode, anode and separator) in an integrated way using electro-spraying and electro-spinning technologies. More importantly, this novel battery manufacturing method can produce LIBs in large scale, and the products show excellent mechanical strength, flexibility, thermal stability and electrolyte wettability. Additionally, the performance of the as-prepaed Li Fe PO_(4)||graphite full cell produced by this new method is comparable or even better than that produced by conventional manufacturing approach. In brief, this work provides a new promising technology to prepare LIBs with low cost and better performance.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
文摘In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presented.The improved tangential displacement evaluation in the present implementation of the discrete element method has been derived and implemented to preserve the consistency of the correct time level evaluation during the time integration process in calculating the algorithmic tangential displacement.Several numerical examples have been used to validate the proposed tangential displacement evaluation;this is in contrast to past practices which only seem to attain the first-order time accuracy due to inconsistent time level implementation with different algorithms for normal and tangential directions.The comparisons with the existing implementation and the superiority of the proposed implementation are given in terms of the convergence rate with improved numerical accuracy in time.Moreover,several schemes via the unified second-order time integrators within the framework of the GSSSS family have been carried out based on the proposed correct implementation.All the numerical results demonstrate that using the existing state-of-the-art implementation reduces the time accuracy to be first-order accurate in time,while the proposed implementation preserves the correct time accuracy to yield second-order.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872084 and 10932002)the Research Program of Higher Education of Liaoning Province,China (Grant No. 2008S098)+3 种基金the Program of Supporting Elitists of Higher Education of Liaoning Province,China (Grant No. 2008RC20)the Program of Constructing Liaoning Provincial Key Laboratory,China (Grant No. 2008403009)the Foundation Research Plan of Liaoning educational Bureau,China (Grant No. L2010147)the Youth fund of Liaoning University,China (Grant No. 2008LDQN04)
文摘The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.
基金supported by the National Natural Science Foundation of China(Grant No.11401259)the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRR11407)
文摘In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrodinger equations with variable coefficients, cubic nonlinear Schrodinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.
文摘N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used;see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error growth for different numerical integrators. Throughout the paper, the error growth is examined in terms of the global errors in the positions and velocities, and the relative errors in the energy and angular momentum of the system. We performed numerical experiments for the different integrators applied to the Jovian problem over a long interval of duration, as long as one million years, with the local error tolerance ranging from 10-16 to 10-18.
文摘ZTE Corporation has signed strategic telecommunications software agreement with two leading providers in Europe and Latin America to optimize its offerings for target customers in
基金by the National Natural Science Foundation of China under Grant No 10873007.
文摘Two new fourth-order three-stage symplectic integrators are specifically designed for a family of Hamiltonian systems,such as the harmonic oscillator,mathematical pendulum and latticeφ4 model.When the nonintegrable latticeφ4 system is taken as a test model,numerical comparisons show that the new methods have a great advantage over the second-order Verlet symplectic integrators in the accuracy of energy,become explicitly better than the usual non-gradient fourth-order seven-stage symplectic integrator of Forest and Ruth,and are almost equivalent to a fourth-order seven-stage force gradient symplectic integrator of Chin.As the most important advantage,the new integrators are convenient for solving the variational equations of many Hamiltonian systems so as to save a great deal of the computational cost when scanning a lot of orbits for chaos.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciencesthe Natural Science Foundation of Henan Province Government, China (Grant No 0511022200)
文摘A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.
基金Project supported by the National Natural Science Foundation of China (No.10572119)Program for New Century Excellent Talent of Ministry of Education of China (No.NCET-04-0958)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipmentthe Doctorate Foundation of Northwestern Polytechnical University
文摘Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.
基金Project supported by the National Natural Science Foundation of China(Nos.11172334 and11202247)the Fundamental Research Funds for the Central Universities(No.2013390003161292)
文摘This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.
文摘For the problem of set point regulation of the liquid level in coupled tank systems, we present a continuous sliding mode control(SMC) with a "conditional integrator", which only provides integral action inside the boundary layer. For a special choice of the controller parameters, our design can be viewed as a PID controller with anti-windup and achieves robust regulation.The proposed controller recovers the transient response performance without control chattering. Both full-state feedback as well as output-feedback designs are presented in this work. Our output-feedback design uses a high-gain observer(HGO) which recovers the performance of a state-feedback design where plant parameters are assumed to be known. We consider both interacting as well as non-interacting tanks and analytical results for stability and transient performance are presented in both the cases. The proposed controller continuous SMC with conditional integrators(CSMCCI) provides superior results in terms of the performance measures as well as performance indices than ideal SMC, continuous SMC(CSMC) and continuous SMC with conventional integrator(CSMCI). Experimental results demonstrate good tracking performance in spite of unmodeled dynamics and disturbances.
基金supported by the National Natural Science Foundation of China(12271523,11901577,11971481,12071481)the National Key R&D Program of China(SQ2020YFA0709803)+5 种基金the Defense Science Foundation of China(2021-JCJQ-JJ-0538)the National Key Project(GJXM92579)the Natural Science Foundation of Hunan(2020JJ5652,2021JJ20053)the Research Fund of National University of Defense Technology(ZK19-37,ZZKY-JJ-21-01)the Science and Technology Innovation Program of Hunan Province(2021RC3082)the Research Fund of College of Science,National University of Defense Technology(2023-lxy-fhjj-002).
文摘We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200sponsored by Tsinghua-Toyota Joint Research Fund+12 种基金in part by National Natural Science Foundation of China under Grant 62374099, Grant 62022047, Grant U20A20168, Grant 51861145202, Grant 51821003, and Grant 62175219in part by the National Key R&D Program under Grant 2016YFA0200400in part by Beijing Natural Science-Xiaomi Innovation Joint Fund Grant L233009in part supported by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT KF202204)in part by the Daikin-Tsinghua Union Programin part sponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Programin part by the Guoqiang Institute, Tsinghua Universityin part by the Research Fund from Beijing Innovation Center for Future Chipin part by Shanxi “1331 Project” Key Subjects Constructionin part by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019120)the opening fund of Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciencesin part by the project of MOE Innovation Platformin part by the State Key Laboratory of Integrated Chips and Systems
文摘Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.
基金This work is financially supported by the National Natural Science Foundation of China(52303036)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297028)+4 种基金the Guangxi Science and Technology Base and Talent Special Project(GUIKE AD23026179)the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019)the Natural Science Foundation of Sichuan Province(2023NSFSC0986)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Sklpme2023-3-18).
文摘Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金supported by the National Natural Science Foundation of China(21978013)the Fundamental Research Funds for the Central in China(XK1802-4)。
文摘Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality.
基金supported by the Capital’s Funds for Health Improvement and Research,No.2022-2-2072(to YG).
文摘Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.
基金This work was financially supported by the National Nat-ural Science Foundation of China No.U20A20247 and 51922038.
文摘Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can greatly affect the cost of battery production. Up to now, lithium ion battery producers still adopt manufacturing methods with cumbersome sub-components preparing processes and costly assembling procedures, which will undoubtedly elevate the producing cost. Herein, we propose a novel approach to directly assemble battery components(cathode, anode and separator) in an integrated way using electro-spraying and electro-spinning technologies. More importantly, this novel battery manufacturing method can produce LIBs in large scale, and the products show excellent mechanical strength, flexibility, thermal stability and electrolyte wettability. Additionally, the performance of the as-prepaed Li Fe PO_(4)||graphite full cell produced by this new method is comparable or even better than that produced by conventional manufacturing approach. In brief, this work provides a new promising technology to prepare LIBs with low cost and better performance.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.