We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with j...We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with jumps. We show the existence and uniqueness of a continuous viscosity solution of equation with non local terms, if the generator is not monotonous and Levy's measure is infinite.展开更多
We study the Cauchy problem of a one-dimensional nonlinear viscoelastic model with fading memory. By introducing appropriate new variables we convert the integro-partial differential equations into a hyperbolic system...We study the Cauchy problem of a one-dimensional nonlinear viscoelastic model with fading memory. By introducing appropriate new variables we convert the integro-partial differential equations into a hyperbolic system of balance laws. When it is a perturbation of a constant state, the solution is shown time asymptotically approach- ing to predetermined diffusion waves, Pointwise estimates on the convergence details are obtained.展开更多
This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on ...This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on σand f , we obtained the unique existence of the global classical solution of this problem.展开更多
文摘We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with jumps. We show the existence and uniqueness of a continuous viscosity solution of equation with non local terms, if the generator is not monotonous and Levy's measure is infinite.
文摘We study the Cauchy problem of a one-dimensional nonlinear viscoelastic model with fading memory. By introducing appropriate new variables we convert the integro-partial differential equations into a hyperbolic system of balance laws. When it is a perturbation of a constant state, the solution is shown time asymptotically approach- ing to predetermined diffusion waves, Pointwise estimates on the convergence details are obtained.
文摘This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on σand f , we obtained the unique existence of the global classical solution of this problem.