As the market competition among enterprises grows intensively and the demand for high quality products increases rapidly, product quality inspection and control has become one of the most important issues of manufactu...As the market competition among enterprises grows intensively and the demand for high quality products increases rapidly, product quality inspection and control has become one of the most important issues of manufacturing, and improving the efficiency and accuracy of inspection is also one of problems which enterprises must solve. It is particularly important to establish rational inspection planning for parts before inspecting product quality correctly. The traditional inspection methods have been difficult to satisfy the requirements on the speed and accuracy of modern manufacturing, so CAD-based computer-aided inspection planning (CAIP) system with the coordinate measuring machines (CMM) came into being. In this paper, an algorithm for adaptive sampling and collision-free inspection path generation is proposed, aiming at the CAD model-based inspection planning for coordinate measuring machines (CMM). Firstly, using the method of step adaptive subdivision and iteration , the sampling points for the specified number with even distribution will be generated automatically. Then, it generates the initial path by planning the inspection sequence of measurement points according to the values of each point's weight sum of parameters, and detects collision by constructing section lines between the probe swept-volume surfaces and the part surfaces, with axis-aligned bounding box (AABB) filtering to improve the detection efficiency. For collided path segments, it implements collision avoidance firstly aiming at the possible outer-circle features, and then at other collisions, for which the obstacle-avoiding movements are planned with the heuristic rules, and combined with a designed expanded AABB to set the obstacle-avoiding points. The computer experimental results show that the presented algorithm can plan sampling points' locations with strong adaptability for different complexity of general surfaces, and generate efficient optimum path in a short time and avoid collision effectively.展开更多
The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at...The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.展开更多
A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional items related with the force deformation are introduced to the error compensation aquatio...A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional items related with the force deformation are introduced to the error compensation aquations. The research was carried on a moving colunm horizontal arm CMM. Experimental results show that both the effects of systematic components of error motions and force deformations are greatly reduced, which shows the effectiveness of proposed technique.展开更多
The accessibility of coordinate measuring machines (CMMs) in dimensional inspection is studied. The problem of computing the global accessibility cone is solved using a method of angle representation. Otherwise, the l...The accessibility of coordinate measuring machines (CMMs) in dimensional inspection is studied. The problem of computing the global accessibility cone is solved using a method of angle representation. Otherwise, the length and volume of probe are considered sufficiently so that all the feasible probe orientations could be determined for the inspection of a workpiece when a touch trigger probe is used and the shortcoming of abstracting a probe as an infinite half line could be overcome completely. In the end, an example is given to explain the method.展开更多
Form error measurement is a critical exercise in providing measures for the quality control in the precision manufacturing industry.Coordinate measuring machine (CMM) is one of the automated systems used in the accu...Form error measurement is a critical exercise in providing measures for the quality control in the precision manufacturing industry.Coordinate measuring machine (CMM) is one of the automated systems used in the accurate and precise dimensional measurements and geometrical form.This paper aims to study the effect of dynamic original unforeseeable errors at different undulations per revolution (UPR) of standard artifact measurement using selected two types of CMM touchtriggering stylus.Stylus-type and stylus-speed parameters were adopted and utilized throughout the course of experiment.The results are analyzed using fast Fourier transformation to obtain foreseeable geometrical errors due to CMM machine structure and stylus scanning speeds.The results of experiment successfully indicate that the number of UPR plays an important role in determining the CMM accuracy level of the roundness measurement result.Some specific error equations for stylus system and machine structure responses have been postulated and analysed to empirically predict the accuracy of PRISMOBridge-CMM-type at National Institute for Standards (NIS) in egypt.展开更多
The increase of quality consciousness brings about the growth of significance of metrological systems. Besides the significance, the level of automatization, flexibility, accuracy, et al. have advanced. The modern mea...The increase of quality consciousness brings about the growth of significance of metrological systems. Besides the significance, the level of automatization, flexibility, accuracy, et al. have advanced. The modern measuring systems are constructed so that nearly all necessary dimensional characteristics can be measured with them. However, conventional measuring systems are provided for particular mode measurements. This research paper presents and compares several conventional and modem measuring systems and methods. The measured value is roundness, one of the basic shapes of cross section in mechanical engineering. This paper arises in search of answers for the question whether conventional measuring techniques and equipments are made redundant because of the modern ones. In what segments and in which criterion are modem methods preferable?展开更多
基金Tsupported by Innovation Fund of Ministry of Science andTechnology of China for Small Technology-Based Firms (Grant No.04C26223400148)
文摘As the market competition among enterprises grows intensively and the demand for high quality products increases rapidly, product quality inspection and control has become one of the most important issues of manufacturing, and improving the efficiency and accuracy of inspection is also one of problems which enterprises must solve. It is particularly important to establish rational inspection planning for parts before inspecting product quality correctly. The traditional inspection methods have been difficult to satisfy the requirements on the speed and accuracy of modern manufacturing, so CAD-based computer-aided inspection planning (CAIP) system with the coordinate measuring machines (CMM) came into being. In this paper, an algorithm for adaptive sampling and collision-free inspection path generation is proposed, aiming at the CAD model-based inspection planning for coordinate measuring machines (CMM). Firstly, using the method of step adaptive subdivision and iteration , the sampling points for the specified number with even distribution will be generated automatically. Then, it generates the initial path by planning the inspection sequence of measurement points according to the values of each point's weight sum of parameters, and detects collision by constructing section lines between the probe swept-volume surfaces and the part surfaces, with axis-aligned bounding box (AABB) filtering to improve the detection efficiency. For collided path segments, it implements collision avoidance firstly aiming at the possible outer-circle features, and then at other collisions, for which the obstacle-avoiding movements are planned with the heuristic rules, and combined with a designed expanded AABB to set the obstacle-avoiding points. The computer experimental results show that the presented algorithm can plan sampling points' locations with strong adaptability for different complexity of general surfaces, and generate efficient optimum path in a short time and avoid collision effectively.
文摘The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.
文摘A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional items related with the force deformation are introduced to the error compensation aquations. The research was carried on a moving colunm horizontal arm CMM. Experimental results show that both the effects of systematic components of error motions and force deformations are greatly reduced, which shows the effectiveness of proposed technique.
文摘The accessibility of coordinate measuring machines (CMMs) in dimensional inspection is studied. The problem of computing the global accessibility cone is solved using a method of angle representation. Otherwise, the length and volume of probe are considered sufficiently so that all the feasible probe orientations could be determined for the inspection of a workpiece when a touch trigger probe is used and the shortcoming of abstracting a probe as an infinite half line could be overcome completely. In the end, an example is given to explain the method.
文摘Form error measurement is a critical exercise in providing measures for the quality control in the precision manufacturing industry.Coordinate measuring machine (CMM) is one of the automated systems used in the accurate and precise dimensional measurements and geometrical form.This paper aims to study the effect of dynamic original unforeseeable errors at different undulations per revolution (UPR) of standard artifact measurement using selected two types of CMM touchtriggering stylus.Stylus-type and stylus-speed parameters were adopted and utilized throughout the course of experiment.The results are analyzed using fast Fourier transformation to obtain foreseeable geometrical errors due to CMM machine structure and stylus scanning speeds.The results of experiment successfully indicate that the number of UPR plays an important role in determining the CMM accuracy level of the roundness measurement result.Some specific error equations for stylus system and machine structure responses have been postulated and analysed to empirically predict the accuracy of PRISMOBridge-CMM-type at National Institute for Standards (NIS) in egypt.
文摘The increase of quality consciousness brings about the growth of significance of metrological systems. Besides the significance, the level of automatization, flexibility, accuracy, et al. have advanced. The modern measuring systems are constructed so that nearly all necessary dimensional characteristics can be measured with them. However, conventional measuring systems are provided for particular mode measurements. This research paper presents and compares several conventional and modem measuring systems and methods. The measured value is roundness, one of the basic shapes of cross section in mechanical engineering. This paper arises in search of answers for the question whether conventional measuring techniques and equipments are made redundant because of the modern ones. In what segments and in which criterion are modem methods preferable?