Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architec...Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.展开更多
Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the el...Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the electromagnetic waves from the active transmission for additional information transfer(i.e.,passive transmission).In this paper,a hybrid RIS-based modulation,termed hybrid phase and code modulation(HPCM),is proposed to improve the reliability of RIS-assisted symbiotic radio.In RIS-HPCM,the RIS simultaneously performs direct sequence spread spectrum and passive beamforming on incident signals.Moreover,both the spreading code and phase offset are exploited to carry the RIS’s own information.A low-complexity detector is designed,in which the receiver first detects the spreading codes and then demodulates the constellation symbols.We analyze the bit error rate(BER)performance of RIS-HPCM over Rician fading channels.BER upper bounds and approximate BER expressions are derived in closed-form for maximum-likelihood and low-complexity detectors,respectively.Simulation results in terms of BER verify the analysis and show the superiority of RIS-HPCM over the existing RIS-based modulation.展开更多
In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the rece...In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.展开更多
As industry progresses toward intelligent production and development,on-site workers that perform repetitive tasks will be replaced by intelligent machines.Currently,automation applications still have the following pr...As industry progresses toward intelligent production and development,on-site workers that perform repetitive tasks will be replaced by intelligent machines.Currently,automation applications still have the following problems:(1)on-site personnel are required to line up the workpieces before a robot arm can pick it up;(2)the trajectory generated by offline programming software must be adjusted by on-site personnel in accordance with the processing results;and(3)because of workpiece positioning errors and tool wear,achieving acceptable processing results is difficult.This study developed intelligent application modules that solve the aforementioned automation application problems.These modules predict processing quality,generate trajectory,enable robot arms to load and unload randomly positioned workpieces,and automatically calibrate the system.An automatic gear edge grinding system was developed by integrating each module;the system increases the processing efficiency and solves the current problem of manual grinding being required after gear processing.展开更多
Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of t...Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.展开更多
Studied are the controller design and basic principles of intelligent lighting network. TI’s MSP430F123 is used as a main controller. By using the ZigBee modules(Xbee/Xbee-PRO) and the GSM module(SIM300C) for wireles...Studied are the controller design and basic principles of intelligent lighting network. TI’s MSP430F123 is used as a main controller. By using the ZigBee modules(Xbee/Xbee-PRO) and the GSM module(SIM300C) for wireless communications, the lighting control is enabled to access wireless network. This system uses a mobile phone to achieve light on-off directly, which can accomplish wireless control of intelligent lighting in families.展开更多
This paper introduces the working principle of HVDC control and protection system. And the paper summarizes the flexible HVDC technology features and application fields and describes the composition and software intel...This paper introduces the working principle of HVDC control and protection system. And the paper summarizes the flexible HVDC technology features and application fields and describes the composition and software intelligent flexible HVDC control and protection system configuration. Finally, the simulation results are also given, experimental results show: HVDC flexible intelligent control and protection has a good control effect in the steady state and transient process, suitable for practical engineering application.展开更多
Bi2O2Se thin film could be one of the promising material candidates for the next-generation electronic and optoelectronic applications. However, the performance of Bi2O2Se thin film-based device is not fully explored ...Bi2O2Se thin film could be one of the promising material candidates for the next-generation electronic and optoelectronic applications. However, the performance of Bi2O2Se thin film-based device is not fully explored in the photodetecting area. Considering the fact that the electrical properties such as carrier mobility, work function, and energy band structure of Bi2O2Se are thickness-dependent, the in-plane Bi2O2Se homojunctions consisting of layers with different thicknesses are successfully synthesized by the chemical vapor deposition(CVD) method across the terraces on the mica substrates,where terraces are created in the mica surface layer peeling off process. In this way, effective internal electrical fields are built up along the Bi2O2Se homojunctions, exhibiting diode-like rectification behavior with an on/off ratio of 102, what is more, thus obtained photodetectors possess highly sensitive and ultrafast features, with a maximum photoresponsivity of 2.5 A/W and a lifetime of 4.8 μs. Comparing with the Bi2O2Se uniform thin films, the photo-electric conversion efficiency is greatly improved for the in-plane homojunctions.展开更多
Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS...Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.展开更多
Modulation signal classification in communication systems can be considered a pattern recognition problem.Earlier works have focused on several feature extraction approaches such as fractal feature,signal constellatio...Modulation signal classification in communication systems can be considered a pattern recognition problem.Earlier works have focused on several feature extraction approaches such as fractal feature,signal constellation reconstruction,etc.The recent advent of deep learning(DL)models makes it possible to proficiently classify the modulation signals.In this view,this study designs a chaotic oppositional satin bowerbird optimization(COSBO)with bidirectional long term memory(BiLSTM)model for modulation signal classification in communication systems.The proposed COSBO-BiLSTM technique aims to classify the different kinds of digitally modulated signals.In addition,the fractal feature extraction process takes place by the use of Sevcik Fractal Dimension(SFD)approach.Moreover,the modulation signal classification process takes place using BiLSTM with fully convolutional network(BiLSTM-FCN).Furthermore,the optimal hyperparameter adjustment of the BiLSTM-FCN technique takes place by the use of COSBO algorithm.In order to ensure the enhanced classification performance of the COSBO-BiLSTM model,a wide range of simulations were carried out.The experimental results highlighted that the COSBO-BiLSTM technique has accomplished improved performance over the existing techniques.展开更多
Bigeye tuna Thunnus obesus is an important migratory species that forages deeply,and El Niño events highly influence its distribution in the eastern Pacific Ocean.While sea surface temperature is widely recognize...Bigeye tuna Thunnus obesus is an important migratory species that forages deeply,and El Niño events highly influence its distribution in the eastern Pacific Ocean.While sea surface temperature is widely recognized as the main factor affecting bigeye tuna(BET)distribution during El Niño events,the roles of different types of El Niño and subsurface oceanic signals,such as ocean heat content and mixed layer depth,remain unclear.We conducted A spatial-temporal analysis to investigate the relationship among BET distribution,El Niño events,and the underlying oceanic signals to address this knowledge gap.We used monthly purse seine fisheries data of BET in the eastern tropical Pacific Ocean(ETPO)from 1994 to 2012 and extracted the central-Pacific El Niño(CPEN)indices based on Niño 3 and Niño 4indexes.Furthermore,we employed Explainable Artificial Intelligence(XAI)models to identify the main patterns and feature importance of the six environmental variables and used information flow analysis to determine the causality between the selected factors and BET distribution.Finally,we analyzed Argo datasets to calculate the vertical,horizontal,and zonal mean temperature differences during CPEN and normal years to clarify the oceanic thermodynamic structure differences between the two types of years.Our findings reveal that BET distribution during the CPEN years is mainly driven by advection feedback of subsurface warmer thermal signals and vertically warmer habitats in the CPEN domain area,especially in high-yield fishing areas.The high frequency of CPEN events will likely lead to the westward shift of fisheries centers.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51573006,51573003,51203003,51303008,51302006,51402006,51272026,and 51273022)the Major Project of Beijing Science and Technology Program,China(Grant Nos.Z151100003315023 and Z141100003814011)the Fok Ying Tung Education Foundation,China(Grant No.142009)
文摘Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.
基金supported in part by the National Natural Science Foundation of China under Grant 62201228 and Grant 62001190in part by the Science and Technology Major Project of Tibetan Autonomous Region of China under Grant No.XZ202201ZD0006G02.
文摘Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the electromagnetic waves from the active transmission for additional information transfer(i.e.,passive transmission).In this paper,a hybrid RIS-based modulation,termed hybrid phase and code modulation(HPCM),is proposed to improve the reliability of RIS-assisted symbiotic radio.In RIS-HPCM,the RIS simultaneously performs direct sequence spread spectrum and passive beamforming on incident signals.Moreover,both the spreading code and phase offset are exploited to carry the RIS’s own information.A low-complexity detector is designed,in which the receiver first detects the spreading codes and then demodulates the constellation symbols.We analyze the bit error rate(BER)performance of RIS-HPCM over Rician fading channels.BER upper bounds and approximate BER expressions are derived in closed-form for maximum-likelihood and low-complexity detectors,respectively.Simulation results in terms of BER verify the analysis and show the superiority of RIS-HPCM over the existing RIS-based modulation.
基金supported by National Natural Science Foundation of China(No.61801106).
文摘In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.
基金express gratitude toward the Technology Development Program of the Ministry of Economic Affairs and the Industrial Technology Research Institution for providing funding and support.
文摘As industry progresses toward intelligent production and development,on-site workers that perform repetitive tasks will be replaced by intelligent machines.Currently,automation applications still have the following problems:(1)on-site personnel are required to line up the workpieces before a robot arm can pick it up;(2)the trajectory generated by offline programming software must be adjusted by on-site personnel in accordance with the processing results;and(3)because of workpiece positioning errors and tool wear,achieving acceptable processing results is difficult.This study developed intelligent application modules that solve the aforementioned automation application problems.These modules predict processing quality,generate trajectory,enable robot arms to load and unload randomly positioned workpieces,and automatically calibrate the system.An automatic gear edge grinding system was developed by integrating each module;the system increases the processing efficiency and solves the current problem of manual grinding being required after gear processing.
文摘Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.
基金Special Fund Project for Technology Innovation of Tianjin City(06FZZDGX01800)
文摘Studied are the controller design and basic principles of intelligent lighting network. TI’s MSP430F123 is used as a main controller. By using the ZigBee modules(Xbee/Xbee-PRO) and the GSM module(SIM300C) for wireless communications, the lighting control is enabled to access wireless network. This system uses a mobile phone to achieve light on-off directly, which can accomplish wireless control of intelligent lighting in families.
文摘This paper introduces the working principle of HVDC control and protection system. And the paper summarizes the flexible HVDC technology features and application fields and describes the composition and software intelligent flexible HVDC control and protection system configuration. Finally, the simulation results are also given, experimental results show: HVDC flexible intelligent control and protection has a good control effect in the steady state and transient process, suitable for practical engineering application.
基金Project supported by the National Natural Science Foundation of China(Grant No.61705066)the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(Grant No.IPOC2018B004)the National Key Research and Development Program,China(Grant No.2016YFA0202401)
文摘Bi2O2Se thin film could be one of the promising material candidates for the next-generation electronic and optoelectronic applications. However, the performance of Bi2O2Se thin film-based device is not fully explored in the photodetecting area. Considering the fact that the electrical properties such as carrier mobility, work function, and energy band structure of Bi2O2Se are thickness-dependent, the in-plane Bi2O2Se homojunctions consisting of layers with different thicknesses are successfully synthesized by the chemical vapor deposition(CVD) method across the terraces on the mica substrates,where terraces are created in the mica surface layer peeling off process. In this way, effective internal electrical fields are built up along the Bi2O2Se homojunctions, exhibiting diode-like rectification behavior with an on/off ratio of 102, what is more, thus obtained photodetectors possess highly sensitive and ultrafast features, with a maximum photoresponsivity of 2.5 A/W and a lifetime of 4.8 μs. Comparing with the Bi2O2Se uniform thin films, the photo-electric conversion efficiency is greatly improved for the in-plane homojunctions.
基金supported by the National Science Fund for Young Scholars(Grant No.62201539)the Project of Innovation and Entrepreneurship Training for National Undergraduates(Grant No.202210356005)the project of Zhejiang University Student Science and Technology Innovation Activity Plan(Grant No.2023R409055)。
文摘Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.
文摘Modulation signal classification in communication systems can be considered a pattern recognition problem.Earlier works have focused on several feature extraction approaches such as fractal feature,signal constellation reconstruction,etc.The recent advent of deep learning(DL)models makes it possible to proficiently classify the modulation signals.In this view,this study designs a chaotic oppositional satin bowerbird optimization(COSBO)with bidirectional long term memory(BiLSTM)model for modulation signal classification in communication systems.The proposed COSBO-BiLSTM technique aims to classify the different kinds of digitally modulated signals.In addition,the fractal feature extraction process takes place by the use of Sevcik Fractal Dimension(SFD)approach.Moreover,the modulation signal classification process takes place using BiLSTM with fully convolutional network(BiLSTM-FCN).Furthermore,the optimal hyperparameter adjustment of the BiLSTM-FCN technique takes place by the use of COSBO algorithm.In order to ensure the enhanced classification performance of the COSBO-BiLSTM model,a wide range of simulations were carried out.The experimental results highlighted that the COSBO-BiLSTM technique has accomplished improved performance over the existing techniques.
基金Supported by the Marine S&T Fund of Laoshan Laboratory(Qingdao)(No.LSKJ202204302)the National Natural Science Foundation of China(Nos.42090044,42376175,U2006211)。
文摘Bigeye tuna Thunnus obesus is an important migratory species that forages deeply,and El Niño events highly influence its distribution in the eastern Pacific Ocean.While sea surface temperature is widely recognized as the main factor affecting bigeye tuna(BET)distribution during El Niño events,the roles of different types of El Niño and subsurface oceanic signals,such as ocean heat content and mixed layer depth,remain unclear.We conducted A spatial-temporal analysis to investigate the relationship among BET distribution,El Niño events,and the underlying oceanic signals to address this knowledge gap.We used monthly purse seine fisheries data of BET in the eastern tropical Pacific Ocean(ETPO)from 1994 to 2012 and extracted the central-Pacific El Niño(CPEN)indices based on Niño 3 and Niño 4indexes.Furthermore,we employed Explainable Artificial Intelligence(XAI)models to identify the main patterns and feature importance of the six environmental variables and used information flow analysis to determine the causality between the selected factors and BET distribution.Finally,we analyzed Argo datasets to calculate the vertical,horizontal,and zonal mean temperature differences during CPEN and normal years to clarify the oceanic thermodynamic structure differences between the two types of years.Our findings reveal that BET distribution during the CPEN years is mainly driven by advection feedback of subsurface warmer thermal signals and vertically warmer habitats in the CPEN domain area,especially in high-yield fishing areas.The high frequency of CPEN events will likely lead to the westward shift of fisheries centers.