This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range o...This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.展开更多
The high redundancy actuator(HRA)concept is a novel approach to fault tolerant actuation that uses a high number of small actuation elements,assembled in series and parallel in order to form a single actuator which ha...The high redundancy actuator(HRA)concept is a novel approach to fault tolerant actuation that uses a high number of small actuation elements,assembled in series and parallel in order to form a single actuator which has intrinsic fault tolerance.Whilst this structure afords resilience under passive control methods alone,active control approaches are likely to provide higher levels of performance.A multiple-model control scheme for an HRA applied through the framework of multi-agent control is presented here.The application of this approach to a 10×10 HRA is discussed and consideration of reconfguration delays and fault detection errors are made.The example shows that multi-agent control can provide tangible performance improvements and increase fault tolerance in comparison to a passive fault tolerant approach.Reconfguration delays are shown to be tolerable,and a strategy for handling false fault detections is detailed.展开更多
Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles i...Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests.展开更多
基金Supported by the High Technology Research and Development Programme of China (No.2002AA421160) and the National Natural Science Foundation of China (No.50375008).
文摘This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.
基金supported by UK s Engineering and Physical Sciences Research Council(EPSRC)(No.EP/D078350/1)
文摘The high redundancy actuator(HRA)concept is a novel approach to fault tolerant actuation that uses a high number of small actuation elements,assembled in series and parallel in order to form a single actuator which has intrinsic fault tolerance.Whilst this structure afords resilience under passive control methods alone,active control approaches are likely to provide higher levels of performance.A multiple-model control scheme for an HRA applied through the framework of multi-agent control is presented here.The application of this approach to a 10×10 HRA is discussed and consideration of reconfguration delays and fault detection errors are made.The example shows that multi-agent control can provide tangible performance improvements and increase fault tolerance in comparison to a passive fault tolerant approach.Reconfguration delays are shown to be tolerable,and a strategy for handling false fault detections is detailed.
文摘Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests.