BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly...BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.展开更多
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w...Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Cl...This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.展开更多
Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically.Hence,there is a growing demand for advanced fault diagnosis technologies ...Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically.Hence,there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle break-downs.Due to vehicles’increasingly complex and autonomous nature,there is a growing urgency to investigate novel diagnosis methodologies for improving safety,reliability,and maintainability.While Artificial Intelligence(AI)has provided a great opportunity in this area,a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis(VFD)systems is unavailable.Therefore,this review brings new insights into the potential of AI in VFD methodologies and offers a broad analysis using multiple techniques.We focus on reviewing relevant literature in the field of machine learning as well as deep learning algorithms for fault diagnosis in engines,lifting systems(suspensions and tires),gearboxes,and brakes,among other vehicular subsystems.We then delve into some examples of the use of AI in fault diagnosis and maintenance for electric vehicles and autonomous cars.The review elucidates the transformation of VFD systems that consequently increase accuracy,economization,and prediction in most vehicular sub-systems due to AI applications.Indeed,the limited performance of systems based on only one of these AI techniques is likely to be addressed by combinations:The integration shows that a single technique or method fails its expectations,which can lead to more reliable and versatile diagnostic support.By synthesizing current information and distinguishing forthcoming patterns,this work aims to accelerate advancement in smart automotive innovations,conforming with the requests of Industry 4.0 and adding to the progression of more secure,more dependable vehicles.The findings underscored the necessity for cross-disciplinary cooperation and examined the total potential of AI in vehicle default analysis.展开更多
Hydraulic systems have the characteristics of strong fault concealment,powerful nonlinear time-varying signals,and a complex vibration transmission mechanism;hence,diagnosis of these systems is a challenge.To provide ...Hydraulic systems have the characteristics of strong fault concealment,powerful nonlinear time-varying signals,and a complex vibration transmission mechanism;hence,diagnosis of these systems is a challenge.To provide accurate diagnosis results automatically,numerous studies have been carried out.Among them,signal-based methods are commonly used,which employ signal processing techniques based on the state signal used for extracting features,and further input the features into the classifier for fault recognition.However,their main deficiencies include the following:(1)The features are manually designed and thus may have a lack of objectivity.(2)For signal processing,feature extraction and pattern recognition are conducted using independent models,which cannot be jointly optimized globally.(3)The machine learning algorithms adopted by these methods have a shallow architecture,which limits their capacity to deeply mine the essential features of a fault.As a breakthrough in artificial intelligence,deep learning holds the potential to overcome such deficiencies.Based on deep learning,deep neural networks(DNNs)can automatically learn the complex nonlinear relations implied in a signal,can be globally optimized,and can obtain the high-level features of multi-dimensional data.In this paper,the main technology used in an intelligent fault diagnosis and the current research status of hydraulic system fault diagnosis are summarized and analyzed.The significant prospect of applying deep learning in the field of intelligent fault diagnosis is presented,and the main ideas,methods,and principles of several typical DNNs are described and summarized.The commonality between a fault diagnosis and other issues regarding typical pattern recognition are analyzed,and research ideas for applying DNNs for hydraulic fault diagnosis are proposed.Meanwhile,the research advantages and development trend of DNNs(both domestically and overseas)as applied to an intelligent fault diagnosis are reviewed.Furthermore,the fault characteristics of a complex hydraulic system are summarized and discussed,and the key problems and possible research ideas of applying DNNs to an intelligent hydraulic fault diagnosis are presented and comprehensively analyzed.展开更多
The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowle...The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.展开更多
In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,tr...In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods.展开更多
The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomogr...The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization.展开更多
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects...Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods.展开更多
Age-related Macular Degeneration(AMD)and Diabetic Macular Edema(DME)are two com-mon retinal diseases for elder people that may ultimately cause irreversible blindness.Timely and accurate diagnosis is essential for the...Age-related Macular Degeneration(AMD)and Diabetic Macular Edema(DME)are two com-mon retinal diseases for elder people that may ultimately cause irreversible blindness.Timely and accurate diagnosis is essential for the treatment of these diseases.In recent years,computer-aided diagnosis(CAD)has been deeply investigated and effectively used for rapid and early diagnosis.In this paper,we proposed a method of CAD using vision transformer to analyze optical co-herence tomography(OCT)images and to automatically discriminate AMD,DME,and normal eyes.A classification accuracy of 99.69%was achieved.After the model pruning,the recognition time reached 0.010 s and the classification accuracy did not drop.Compared with the Con-volutional Neural Network(CNN)image classification models(VGG16,Resnet50,Densenet121,and EfficientNet),vision transformer after pruning exhibited better recognition ability.Results show that vision transformer is an improved alternative to diagnose retinal diseases more accurately.展开更多
The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extra...The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.展开更多
Maize(Zea mays L.), also known as corn, is the third most cultivated crop in the world. Northern corn leaf blight(NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica(Luttrell) Leonard a...Maize(Zea mays L.), also known as corn, is the third most cultivated crop in the world. Northern corn leaf blight(NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica(Luttrell) Leonard and Suggs. Early intelligent diagnosis and warning is an effective and economical strategy to control this disease. Today, deep learning is beginning to play an essential role in agriculture. Notably, deep convolutional neural networks(DCNN) are amongst the most successful machine learning techniques in plant disease detection and diagnosis. Our study aims to identify NCLB in the maize-producing area in Jilin Province based on several DCNN models. We established a database of 985 leaf images of healthy and infected maize and applied data augmentation techniques including image segmentation, image resizing, image cropping, and image transformation, to expand to 30 655 images. Several proven convolutional neural networks, such as AlexNet, Google Net, VGG16, and VGG19, were then used to identify diseases. Based on the best performance of the DCNN pre-trained model Google Net, some of the recent loss functions developed for deep facial recognition tasks such as Arc Face, Cos Face, and A-Softmax were applied to detect NCLB. We found that a pre-trained Google Net architecture with the Softmax loss function can achieve an excellent accuracy of 99.94% on NCLB diagnosis. The analysis was implemented in Python with two deep learning frameworks, Pytorch and Keras. The techniques, training, validation, and test results are presented in this paper. Overall, our study explores intelligent identification technology for NCLB and effectively diagnoses NCLB from images of maize.展开更多
Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(S...Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(SVM)to construct classifier for fault diagnosis is presented.The acceleration sensors are applied to collecting the vibration data of different states of high voltage circuit breakers based on self-made experimental platform in this method.The wavelet packet are fully applied to analyze the vibration signal and decompose vibration signal into three layers,and wavelet packet energy entropy of each frequency band are as the characteristic vector of circuit breaker failure mode.Then the intelligent diagnosis network is established on the basis of the support vector machine theory.It is verified that the method has a better capability of classification and a higher accuracy compared with the traditional neural network diagnosis method through distinguishing the three fault modes which are tripping device stuck,the vacuum arcing chamber fixed bolt looseness and too much friction force of the transmission mechanism of circuit breaker in this paper.展开更多
AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease(CD).METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computerbased cl...AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease(CD).METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computerbased classification pipeline. A total of 2835 endoscopic images from the duodenum were recorded in 290 children using the modified immersion technique(MIT). These children underwent routine upper endoscopy for suspected CD or non-celiac upper abdominal symptoms between August 2008 and December 2014. Blinded to the clinical data and biopsy results, three medical experts visually classified each image as normal mucosa(Marsh-0) or villous atrophy(Marsh-3). The experts' decisions were further integrated into state-of-the-arttexture recognition systems. Using the biopsy results as the reference standard, the classification accuracies of this hybrid approach were compared to the experts' diagnoses in 27 different settings.RESULTS: Compared to the experts' diagnoses, in 24 of 27 classification settings(consisting of three imaging modalities, three endoscopists and three classification approaches), the best overall classification accuracies were obtained with the new hybrid approach. In 17 of 24 classification settings, the improvements achieved with the hybrid approach were statistically significant(P < 0.05). Using the hybrid approach classification accuracies between 94% and 100% were obtained. Whereas the improvements are only moderate in the case of the most experienced expert, the results of the less experienced expert could be improved significantly in 17 out of 18 classification settings. Furthermore, the lowest classification accuracy, based on the combination of one database and one specific expert, could be improved from 80% to 95%(P < 0.001).CONCLUSION: The overall classification performance of medical experts, especially less experienced experts, can be boosted significantly by integrating expert knowledge into computer-aided diagnosis systems.展开更多
Computer-aided diagnosis(CAD) has become one of the major research subjects in medical imaging and diagnostic radiology.The basic concept of CAD is to provide computer output as a second opinion to assist radiologists...Computer-aided diagnosis(CAD) has become one of the major research subjects in medical imaging and diagnostic radiology.The basic concept of CAD is to provide computer output as a second opinion to assist radiologists' image interpretations by improving the accuracy and consistency of radiologic diagnosis and also by reducing the image-reading time.To date,research on CAD in ultrasound(US)-based diagnosis has been carried out mostly for breast lesions and has been limited in the fields of gastroenterology and hepatology,with most studies being conducted using B-mode US images.Two CAD schemes with contrast-enhanced US(CEUS) that are used in classifying focal liver lesions(FLLs) as liver metastasis,hemangioma,or three histologically differentiated types of hepatocellular carcinoma(HCC) are introduced in this article:one is based on physicians' subjective pattern classifications(subjective analysis) and the other is a computerized scheme for classification of FLLs(quantitative analysis).Classification accuracies for FLLs for each CAD scheme were 84.8% and 88.5% for metastasis,93.3% and 93.8% for hemangioma,and 98.6% and 86.9% for all HCCs,respectively.In addition,the classification accuracies for histologic differentiation of HCCs were 65.2% and 79.2% for well-differentiated HCCs,41.7% and 50.0% for moderately differentiated HCCs,and 80.0% and 77.8% for poorly differentiated HCCs,respectively.There are a number of issues concerning the clinical application of CAD for CEUS,however,it is likely that CAD for CEUS of the liver will make great progress in the future.展开更多
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ...The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.展开更多
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin...Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms.展开更多
文摘BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
基金via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444).
文摘Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
文摘This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.
基金funding provided through University Distinguished Research Grants(Project No.RDU223016)as well as financial assistance provided through the Fundamental Research Grant Scheme(No.FRGS/1/2022/TK10/UMP/02/35).
文摘Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically.Hence,there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle break-downs.Due to vehicles’increasingly complex and autonomous nature,there is a growing urgency to investigate novel diagnosis methodologies for improving safety,reliability,and maintainability.While Artificial Intelligence(AI)has provided a great opportunity in this area,a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis(VFD)systems is unavailable.Therefore,this review brings new insights into the potential of AI in VFD methodologies and offers a broad analysis using multiple techniques.We focus on reviewing relevant literature in the field of machine learning as well as deep learning algorithms for fault diagnosis in engines,lifting systems(suspensions and tires),gearboxes,and brakes,among other vehicular subsystems.We then delve into some examples of the use of AI in fault diagnosis and maintenance for electric vehicles and autonomous cars.The review elucidates the transformation of VFD systems that consequently increase accuracy,economization,and prediction in most vehicular sub-systems due to AI applications.Indeed,the limited performance of systems based on only one of these AI techniques is likely to be addressed by combinations:The integration shows that a single technique or method fails its expectations,which can lead to more reliable and versatile diagnostic support.By synthesizing current information and distinguishing forthcoming patterns,this work aims to accelerate advancement in smart automotive innovations,conforming with the requests of Industry 4.0 and adding to the progression of more secure,more dependable vehicles.The findings underscored the necessity for cross-disciplinary cooperation and examined the total potential of AI in vehicle default analysis.
基金Supported by National Natural Science Foundation of China(Grant No.51705531)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20150724)
文摘Hydraulic systems have the characteristics of strong fault concealment,powerful nonlinear time-varying signals,and a complex vibration transmission mechanism;hence,diagnosis of these systems is a challenge.To provide accurate diagnosis results automatically,numerous studies have been carried out.Among them,signal-based methods are commonly used,which employ signal processing techniques based on the state signal used for extracting features,and further input the features into the classifier for fault recognition.However,their main deficiencies include the following:(1)The features are manually designed and thus may have a lack of objectivity.(2)For signal processing,feature extraction and pattern recognition are conducted using independent models,which cannot be jointly optimized globally.(3)The machine learning algorithms adopted by these methods have a shallow architecture,which limits their capacity to deeply mine the essential features of a fault.As a breakthrough in artificial intelligence,deep learning holds the potential to overcome such deficiencies.Based on deep learning,deep neural networks(DNNs)can automatically learn the complex nonlinear relations implied in a signal,can be globally optimized,and can obtain the high-level features of multi-dimensional data.In this paper,the main technology used in an intelligent fault diagnosis and the current research status of hydraulic system fault diagnosis are summarized and analyzed.The significant prospect of applying deep learning in the field of intelligent fault diagnosis is presented,and the main ideas,methods,and principles of several typical DNNs are described and summarized.The commonality between a fault diagnosis and other issues regarding typical pattern recognition are analyzed,and research ideas for applying DNNs for hydraulic fault diagnosis are proposed.Meanwhile,the research advantages and development trend of DNNs(both domestically and overseas)as applied to an intelligent fault diagnosis are reviewed.Furthermore,the fault characteristics of a complex hydraulic system are summarized and discussed,and the key problems and possible research ideas of applying DNNs to an intelligent hydraulic fault diagnosis are presented and comprehensively analyzed.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant No.F2016203421)
文摘The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
基金This research has been funded by Dirección General de Investigaciones of Universidad Santiago de Cali under call No.01-2021.The authors would like to thank Chennai Institute of Technology for providing us with various resources and unconditional support for carrying out this study.
文摘In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods.
文摘The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Program of China+2 种基金Project(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(NP2018304)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2017-IV-0008-0045)supported by the National Science and Technology Major Project
文摘Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods.
基金This work was supported by the Science and Technology innovation project of Shanghai Science and Technology Commission(19441905800)the Natural National Science Foundation of China(62175156,81827807,8210041176,82101177,61675134)+1 种基金the Project of State Key Laboratory of Ophthalmology,Optometry and Visual Science,Wenzhou Medical University(K181002)the Key R&D Program Projects in Zhejiang Province(2019C03045).
文摘Age-related Macular Degeneration(AMD)and Diabetic Macular Edema(DME)are two com-mon retinal diseases for elder people that may ultimately cause irreversible blindness.Timely and accurate diagnosis is essential for the treatment of these diseases.In recent years,computer-aided diagnosis(CAD)has been deeply investigated and effectively used for rapid and early diagnosis.In this paper,we proposed a method of CAD using vision transformer to analyze optical co-herence tomography(OCT)images and to automatically discriminate AMD,DME,and normal eyes.A classification accuracy of 99.69%was achieved.After the model pruning,the recognition time reached 0.010 s and the classification accuracy did not drop.Compared with the Con-volutional Neural Network(CNN)image classification models(VGG16,Resnet50,Densenet121,and EfficientNet),vision transformer after pruning exhibited better recognition ability.Results show that vision transformer is an improved alternative to diagnose retinal diseases more accurately.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175511,61472444)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20150724)Pre-study Foundation of PLA University of Science and Technology,China(Grant No.KYGYZL139)
文摘The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.
基金financially supported by the Key Planning Projects on Science and Technology of Jilin Province,China(20180201012NY)the Inter-Governmental International Cooperation Special Project of National Key R&D Program of China(2019YFE0114200)the National Key R&D Program of China(2017YFD0201802)。
文摘Maize(Zea mays L.), also known as corn, is the third most cultivated crop in the world. Northern corn leaf blight(NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica(Luttrell) Leonard and Suggs. Early intelligent diagnosis and warning is an effective and economical strategy to control this disease. Today, deep learning is beginning to play an essential role in agriculture. Notably, deep convolutional neural networks(DCNN) are amongst the most successful machine learning techniques in plant disease detection and diagnosis. Our study aims to identify NCLB in the maize-producing area in Jilin Province based on several DCNN models. We established a database of 985 leaf images of healthy and infected maize and applied data augmentation techniques including image segmentation, image resizing, image cropping, and image transformation, to expand to 30 655 images. Several proven convolutional neural networks, such as AlexNet, Google Net, VGG16, and VGG19, were then used to identify diseases. Based on the best performance of the DCNN pre-trained model Google Net, some of the recent loss functions developed for deep facial recognition tasks such as Arc Face, Cos Face, and A-Softmax were applied to detect NCLB. We found that a pre-trained Google Net architecture with the Softmax loss function can achieve an excellent accuracy of 99.94% on NCLB diagnosis. The analysis was implemented in Python with two deep learning frameworks, Pytorch and Keras. The techniques, training, validation, and test results are presented in this paper. Overall, our study explores intelligent identification technology for NCLB and effectively diagnoses NCLB from images of maize.
基金Project Supported by National Natural Science Foundation of China(51177104)Liaoning Province Natural Science Foundation of China(201102169)
文摘Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(SVM)to construct classifier for fault diagnosis is presented.The acceleration sensors are applied to collecting the vibration data of different states of high voltage circuit breakers based on self-made experimental platform in this method.The wavelet packet are fully applied to analyze the vibration signal and decompose vibration signal into three layers,and wavelet packet energy entropy of each frequency band are as the characteristic vector of circuit breaker failure mode.Then the intelligent diagnosis network is established on the basis of the support vector machine theory.It is verified that the method has a better capability of classification and a higher accuracy compared with the traditional neural network diagnosis method through distinguishing the three fault modes which are tripping device stuck,the vacuum arcing chamber fixed bolt looseness and too much friction force of the transmission mechanism of circuit breaker in this paper.
基金Supported by the Austrian Science Fund(FWF),No.KLI 429-B13 to Vécsei A
文摘AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease(CD).METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computerbased classification pipeline. A total of 2835 endoscopic images from the duodenum were recorded in 290 children using the modified immersion technique(MIT). These children underwent routine upper endoscopy for suspected CD or non-celiac upper abdominal symptoms between August 2008 and December 2014. Blinded to the clinical data and biopsy results, three medical experts visually classified each image as normal mucosa(Marsh-0) or villous atrophy(Marsh-3). The experts' decisions were further integrated into state-of-the-arttexture recognition systems. Using the biopsy results as the reference standard, the classification accuracies of this hybrid approach were compared to the experts' diagnoses in 27 different settings.RESULTS: Compared to the experts' diagnoses, in 24 of 27 classification settings(consisting of three imaging modalities, three endoscopists and three classification approaches), the best overall classification accuracies were obtained with the new hybrid approach. In 17 of 24 classification settings, the improvements achieved with the hybrid approach were statistically significant(P < 0.05). Using the hybrid approach classification accuracies between 94% and 100% were obtained. Whereas the improvements are only moderate in the case of the most experienced expert, the results of the less experienced expert could be improved significantly in 17 out of 18 classification settings. Furthermore, the lowest classification accuracy, based on the combination of one database and one specific expert, could be improved from 80% to 95%(P < 0.001).CONCLUSION: The overall classification performance of medical experts, especially less experienced experts, can be boosted significantly by integrating expert knowledge into computer-aided diagnosis systems.
文摘Computer-aided diagnosis(CAD) has become one of the major research subjects in medical imaging and diagnostic radiology.The basic concept of CAD is to provide computer output as a second opinion to assist radiologists' image interpretations by improving the accuracy and consistency of radiologic diagnosis and also by reducing the image-reading time.To date,research on CAD in ultrasound(US)-based diagnosis has been carried out mostly for breast lesions and has been limited in the fields of gastroenterology and hepatology,with most studies being conducted using B-mode US images.Two CAD schemes with contrast-enhanced US(CEUS) that are used in classifying focal liver lesions(FLLs) as liver metastasis,hemangioma,or three histologically differentiated types of hepatocellular carcinoma(HCC) are introduced in this article:one is based on physicians' subjective pattern classifications(subjective analysis) and the other is a computerized scheme for classification of FLLs(quantitative analysis).Classification accuracies for FLLs for each CAD scheme were 84.8% and 88.5% for metastasis,93.3% and 93.8% for hemangioma,and 98.6% and 86.9% for all HCCs,respectively.In addition,the classification accuracies for histologic differentiation of HCCs were 65.2% and 79.2% for well-differentiated HCCs,41.7% and 50.0% for moderately differentiated HCCs,and 80.0% and 77.8% for poorly differentiated HCCs,respectively.There are a number of issues concerning the clinical application of CAD for CEUS,however,it is likely that CAD for CEUS of the liver will make great progress in the future.
文摘The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.
文摘Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms.