Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequ...Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequence while minimizing computation time. This combinatorial optimization approach is initially demonstrated by utilizing a traditional genetic algorithm (GA), followed by the incorporation of artificial intelligence utilizing embedded rules based on domain-specific knowledge. The aim of this initiative is to compare the results of the traditional and rule-based optimization approaches with results acquired through an intelligent crossover methodology. The intelligent crossover approach encompasses a two-dimensional GA encoding where a second chromosome string is introduced within the GA, offering a sophisticated means for chromosome crossover amongst selected parents. Additionally, parent selection intelligence is incorporated where the best-traversed paths or population members are retained and utilized as potential parents to mate with parents selected within a traditional GA methodology. A further enhancement regarding the utilization of saved optimal population members as potential parents is mathematically explored within this literature.展开更多
文摘Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequence while minimizing computation time. This combinatorial optimization approach is initially demonstrated by utilizing a traditional genetic algorithm (GA), followed by the incorporation of artificial intelligence utilizing embedded rules based on domain-specific knowledge. The aim of this initiative is to compare the results of the traditional and rule-based optimization approaches with results acquired through an intelligent crossover methodology. The intelligent crossover approach encompasses a two-dimensional GA encoding where a second chromosome string is introduced within the GA, offering a sophisticated means for chromosome crossover amongst selected parents. Additionally, parent selection intelligence is incorporated where the best-traversed paths or population members are retained and utilized as potential parents to mate with parents selected within a traditional GA methodology. A further enhancement regarding the utilization of saved optimal population members as potential parents is mathematically explored within this literature.