Aiming at the limitations of the existing knowledge representations in intelligent detection, a new method of Extension-based Knowledge Representation (EKR) was proposed. The definitions, grammar rules, and storage st...Aiming at the limitations of the existing knowledge representations in intelligent detection, a new method of Extension-based Knowledge Representation (EKR) was proposed. The definitions, grammar rules, and storage structure of EKR were presented. An Extension Solving Model (ESM) based on EKR was discussed in detail, including creation of the extension constraint graph, extended inference, calculation of relevant functions and generation of extension set. A knowledge base system based on EKR and ESM was developed, which was applied in extension repository system intelligent design of detection in photosynthesis process of D.huoshanense. More reasonable results were obtained than traditional rule-based system. EKR was feasible in intelligent design to solve the problem of intelligent detection knowledge representations.展开更多
According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and genera...According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.展开更多
In this paper, decision making in complex environment is considered and an approach integrating quantitative decision model with qualitative judgment is proposed. The concept of belief degree for quantitative decision...In this paper, decision making in complex environment is considered and an approach integrating quantitative decision model with qualitative judgment is proposed. The concept of belief degree for quantitative decision model in a complex environment is presented. The integration in formulation and reasoning of quantitative model with qualitative judgment is studied. The combination of various belief degree generated by quantitative model and qualitative judgment is discussed. A decision rule of tradeoff between optimality and belief degree of optimality is proposed.展开更多
This paper describes a new approach to intelligent model based predictive control scheme for deriving a complex system. In the control scheme presented, the main problem of the linear model based predictive control th...This paper describes a new approach to intelligent model based predictive control scheme for deriving a complex system. In the control scheme presented, the main problem of the linear model based predictive control theory in dealing with severe nonlinear and time variant systems is thoroughly solved. In fact, this theory could appropriately be improved to a perfect approach for handling all complex systems, provided that they are firstly taken into consideration in line with the outcomes presented. This control scheme is organized based on a multi-fuzzy-based predictive control approach as well as a multi-fuzzy-based predictive model approach, while an intelligent decision mechanism system (IDMS) is used to identify the best fuzzy-based predictive model approach and the corresponding fuzzy-based predictive control approach, at each instant of time. In order to demonstrate the validity of the proposed control scheme, the single linear model based generalized predictive control scheme is used as a benchmark approach. At last, the appropriate tracking performance of the proposed control scheme is easily outperformed in comparison with previous one.展开更多
With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision su...With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision support systems (DSS). To give an improved support to mobile business professionals, it is necessary to go further than just allowing a simple remote access to a Business Intelligence platform. In this paper, the need for actual context-aware mobile Geospatial Business Intelligence (GeoBI) systems that can help capture, filter, organize and structure the user mobile context is exposed and justified. Furthermore, since capturing, structuring, and modeling mobile contextual information is still a research issue, a wide inventory of existing research work on context and mobile context is provided. Then, step by step, we methodologically identify relevant contextual information to capture for mobility purposes as well as for BI needs, organize them into context-dimensions, and build a hierarchical mobile GeoBI context model which (1) is geo-spatial-extended, (2) fits with human perception of mobility, (3) takes into account the local context interactions and information-sharing with remote contexts, and (4) matches with the usual hierarchical aggregated structure of BI data.展开更多
The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making(IDM)systems.Consequently,IDM shoul...The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making(IDM)systems.Consequently,IDM should possess the ability to continuously acquire new skills and effectively generalize across a broad range of applications.The advancement of Artificial General Intelligence(AGI)that transcends task and application boundaries is critical for enhancing IDM.Recent studies have extensively investigated the Transformer neural architecture as a foundational model for various tasks,including computer vision,natural language processing,and reinforcement learning.We propose that a Foundation Decision Model(FDM)can be developed by formulating diverse decision-making tasks as sequence decoding tasks using the Transformer architecture,offering a promising solution for expanding IDM applications in complex real-world situations.In this paper,we discuss the efficiency and generalization improvements offered by a foundation decision model for IDM and explore its potential applications in multi-agent game AI,production scheduling,and robotics tasks.Lastly,we present a case study demonstrating our FDM implementation,DigitalBrain(DB1)with 1.3 billion parameters,achieving human-level performance in 870 tasks,such as text generation,image captioning,video game playing,robotic control,and traveling salesman problems.As a foundation decision model,DB1 represents an initial step toward more autonomous and efficient real-world IDM applications.展开更多
Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence t...Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.展开更多
Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurat...Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment.展开更多
Internet of Things(IoT)has become a major technological development which offers smart infrastructure for the cloud-edge services by the interconnection of physical devices and virtual things among mobile applications...Internet of Things(IoT)has become a major technological development which offers smart infrastructure for the cloud-edge services by the interconnection of physical devices and virtual things among mobile applications and embedded devices.The e-healthcare application solely depends on the IoT and cloud computing environment,has provided several characteristics and applications.Prior research works reported that the energy consumption for transmission process is significantly higher compared to sensing and processing,which led to quick exhaustion of energy.In this view,this paper introduces a new energy efficient cluster enabled clinical decision support system(EEC-CDSS)for embedded IoT environment.The presented EECCDSS model aims to effectively transmit the medical data from IoT devices and perform accurate diagnostic process.The EEC-CDSS model incorporates particle swarm optimization with levy distribution(PSO-L)based clustering technique,which clusters the set of IoT devices and reduces the amount of data transmission.In addition,the IoT devices forward the data to the cloud where the actual classification procedure is performed.For classification process,variational autoencoder(VAE)is used to determine the existence of disease or not.In order to investigate the proficient results analysis of the EEC-CDSS model,a wide range of simulations was carried out on heart disease and diabetes dataset.The obtained simulation values pointed out the supremacy of the EEC-CDSS model interms of energy efficiency and classification accuracy.展开更多
In this article, our research aims to set up a geo-decisional system, more precisely we are particularly interested in the spatial analysis system of agricultural production in Madagascar. For this, we used the spatia...In this article, our research aims to set up a geo-decisional system, more precisely we are particularly interested in the spatial analysis system of agricultural production in Madagascar. For this, we used the spatial data warehouse technique based on the SOLAP spatial analysis tool. After having defined the concepts underlying these systems, we propose to address the research issues related to them from four points of view: needs study of the Malagasy Ministry of Agriculture, modeling of a multidimensional conceptual model according to the MultiDim model and the implementation of the system studied using GeoKettle, PostGIS, GeoServer, SPAGO BI and Géomondrian technologies. This new system helps improve the decision-making process for agricultural production in Madagascar.展开更多
Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and in...Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and intelligence models, is put forward. The intelligent dispatching system is established and the system architecture is presented. Additionally, the acquisition, representation and reasoning mechanism of reservoir dispatching knowledge are designed in detail.展开更多
Based on extenics, an extensive functional information model(function-behavioral action-structure-environmental constraint) of the mechanical productintelligent conceptual design is developed, and the mechanism of the...Based on extenics, an extensive functional information model(function-behavioral action-structure-environmental constraint) of the mechanical productintelligent conceptual design is developed, and the mechanism of theoretic structure solutions isproduced, the mapping relations between function-behavior and behavior-structure are analyzed. Themodel is applied to the filling material system's conceptual design to verify validity.展开更多
The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet...The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.展开更多
Digital twin(DT)can achieve real-time information fusion and interactive feedback between virtual space and physical space.This technology involves a digital model,real-time information management,comprehensive intell...Digital twin(DT)can achieve real-time information fusion and interactive feedback between virtual space and physical space.This technology involves a digital model,real-time information management,comprehensive intelligent perception networks,etc.,and it can drive the rapid conceptual development of intelligent construction(IC)such as smart factories,smart cities,and smart medical care.Nevertheless,the actual use of DT in IC is partially pending,with numerous scientific factors still not clarified.An overall survey on pending issues and unsolved scientific factors is needed for the development of DT-driven IC.To this end,this study aims to provide a comprehensive review of the state of the art and state of the use of DT-driven IC.The use of DT in planning,design,manufacturing,operation,and maintenance management of IC is demonstrated and analyzed,following which the driving functions of DT in IC are detailed from four aspects:information perception and analysis,data mining and modeling,state assessment and prediction,intelligent optimization and decision-making.Furthermore,the future direction of research,using DT in IC,is presented with some comments and suggestions.This work will help researchers gain in-depth and systematic understanding of the use of DT,and help practitioners to better promote its implementation in IC.展开更多
为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural...为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。展开更多
文摘Aiming at the limitations of the existing knowledge representations in intelligent detection, a new method of Extension-based Knowledge Representation (EKR) was proposed. The definitions, grammar rules, and storage structure of EKR were presented. An Extension Solving Model (ESM) based on EKR was discussed in detail, including creation of the extension constraint graph, extended inference, calculation of relevant functions and generation of extension set. A knowledge base system based on EKR and ESM was developed, which was applied in extension repository system intelligent design of detection in photosynthesis process of D.huoshanense. More reasonable results were obtained than traditional rule-based system. EKR was feasible in intelligent design to solve the problem of intelligent detection knowledge representations.
基金supported by the Military Scentific Research Project(41405030302,41401020301).
文摘According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.
文摘In this paper, decision making in complex environment is considered and an approach integrating quantitative decision model with qualitative judgment is proposed. The concept of belief degree for quantitative decision model in a complex environment is presented. The integration in formulation and reasoning of quantitative model with qualitative judgment is studied. The combination of various belief degree generated by quantitative model and qualitative judgment is discussed. A decision rule of tradeoff between optimality and belief degree of optimality is proposed.
文摘This paper describes a new approach to intelligent model based predictive control scheme for deriving a complex system. In the control scheme presented, the main problem of the linear model based predictive control theory in dealing with severe nonlinear and time variant systems is thoroughly solved. In fact, this theory could appropriately be improved to a perfect approach for handling all complex systems, provided that they are firstly taken into consideration in line with the outcomes presented. This control scheme is organized based on a multi-fuzzy-based predictive control approach as well as a multi-fuzzy-based predictive model approach, while an intelligent decision mechanism system (IDMS) is used to identify the best fuzzy-based predictive model approach and the corresponding fuzzy-based predictive control approach, at each instant of time. In order to demonstrate the validity of the proposed control scheme, the single linear model based generalized predictive control scheme is used as a benchmark approach. At last, the appropriate tracking performance of the proposed control scheme is easily outperformed in comparison with previous one.
文摘With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision support systems (DSS). To give an improved support to mobile business professionals, it is necessary to go further than just allowing a simple remote access to a Business Intelligence platform. In this paper, the need for actual context-aware mobile Geospatial Business Intelligence (GeoBI) systems that can help capture, filter, organize and structure the user mobile context is exposed and justified. Furthermore, since capturing, structuring, and modeling mobile contextual information is still a research issue, a wide inventory of existing research work on context and mobile context is provided. Then, step by step, we methodologically identify relevant contextual information to capture for mobility purposes as well as for BI needs, organize them into context-dimensions, and build a hierarchical mobile GeoBI context model which (1) is geo-spatial-extended, (2) fits with human perception of mobility, (3) takes into account the local context interactions and information-sharing with remote contexts, and (4) matches with the usual hierarchical aggregated structure of BI data.
文摘The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making(IDM)systems.Consequently,IDM should possess the ability to continuously acquire new skills and effectively generalize across a broad range of applications.The advancement of Artificial General Intelligence(AGI)that transcends task and application boundaries is critical for enhancing IDM.Recent studies have extensively investigated the Transformer neural architecture as a foundational model for various tasks,including computer vision,natural language processing,and reinforcement learning.We propose that a Foundation Decision Model(FDM)can be developed by formulating diverse decision-making tasks as sequence decoding tasks using the Transformer architecture,offering a promising solution for expanding IDM applications in complex real-world situations.In this paper,we discuss the efficiency and generalization improvements offered by a foundation decision model for IDM and explore its potential applications in multi-agent game AI,production scheduling,and robotics tasks.Lastly,we present a case study demonstrating our FDM implementation,DigitalBrain(DB1)with 1.3 billion parameters,achieving human-level performance in 870 tasks,such as text generation,image captioning,video game playing,robotic control,and traveling salesman problems.As a foundation decision model,DB1 represents an initial step toward more autonomous and efficient real-world IDM applications.
文摘Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.
基金supported by the Key Project-subtopic of thea13th FiveYear PlanoMilitary Logistics Service Research of China (BWS16J006)。
文摘Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment.
基金This research was supported by the Ministry of Trade,Industry&Energy(MOTIE),Korea Institute for Advancement of Technology(KIAT)through the Encouragement Program for The Industries of Economic Cooperation Region(P0006082)the Soonchunhyang University Research Fund.
文摘Internet of Things(IoT)has become a major technological development which offers smart infrastructure for the cloud-edge services by the interconnection of physical devices and virtual things among mobile applications and embedded devices.The e-healthcare application solely depends on the IoT and cloud computing environment,has provided several characteristics and applications.Prior research works reported that the energy consumption for transmission process is significantly higher compared to sensing and processing,which led to quick exhaustion of energy.In this view,this paper introduces a new energy efficient cluster enabled clinical decision support system(EEC-CDSS)for embedded IoT environment.The presented EECCDSS model aims to effectively transmit the medical data from IoT devices and perform accurate diagnostic process.The EEC-CDSS model incorporates particle swarm optimization with levy distribution(PSO-L)based clustering technique,which clusters the set of IoT devices and reduces the amount of data transmission.In addition,the IoT devices forward the data to the cloud where the actual classification procedure is performed.For classification process,variational autoencoder(VAE)is used to determine the existence of disease or not.In order to investigate the proficient results analysis of the EEC-CDSS model,a wide range of simulations was carried out on heart disease and diabetes dataset.The obtained simulation values pointed out the supremacy of the EEC-CDSS model interms of energy efficiency and classification accuracy.
文摘In this article, our research aims to set up a geo-decisional system, more precisely we are particularly interested in the spatial analysis system of agricultural production in Madagascar. For this, we used the spatial data warehouse technique based on the SOLAP spatial analysis tool. After having defined the concepts underlying these systems, we propose to address the research issues related to them from four points of view: needs study of the Malagasy Ministry of Agriculture, modeling of a multidimensional conceptual model according to the MultiDim model and the implementation of the system studied using GeoKettle, PostGIS, GeoServer, SPAGO BI and Géomondrian technologies. This new system helps improve the decision-making process for agricultural production in Madagascar.
文摘Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and intelligence models, is put forward. The intelligent dispatching system is established and the system architecture is presented. Additionally, the acquisition, representation and reasoning mechanism of reservoir dispatching knowledge are designed in detail.
基金This project is supported by National Natural Science Foundation of China(No.59990470-2)Doctorate Foundation of China (No.20010487024).
文摘Based on extenics, an extensive functional information model(function-behavioral action-structure-environmental constraint) of the mechanical productintelligent conceptual design is developed, and the mechanism of theoretic structure solutions isproduced, the mapping relations between function-behavior and behavior-structure are analyzed. Themodel is applied to the filling material system's conceptual design to verify validity.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:488-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.
基金the financial support partially provided by The Quality Engineering Project of Anhui Province(2019sjjd58,2020sxzx36)The Ministry of Education Cooperative Education Project(201901119016)+1 种基金The Chinese(Jiangsu)-Czech Bilateral Co-funding R&D Project(SBZ2018000220)the Key R&D Project of Anhui Science and Technology Department(202004b11020026).
文摘Digital twin(DT)can achieve real-time information fusion and interactive feedback between virtual space and physical space.This technology involves a digital model,real-time information management,comprehensive intelligent perception networks,etc.,and it can drive the rapid conceptual development of intelligent construction(IC)such as smart factories,smart cities,and smart medical care.Nevertheless,the actual use of DT in IC is partially pending,with numerous scientific factors still not clarified.An overall survey on pending issues and unsolved scientific factors is needed for the development of DT-driven IC.To this end,this study aims to provide a comprehensive review of the state of the art and state of the use of DT-driven IC.The use of DT in planning,design,manufacturing,operation,and maintenance management of IC is demonstrated and analyzed,following which the driving functions of DT in IC are detailed from four aspects:information perception and analysis,data mining and modeling,state assessment and prediction,intelligent optimization and decision-making.Furthermore,the future direction of research,using DT in IC,is presented with some comments and suggestions.This work will help researchers gain in-depth and systematic understanding of the use of DT,and help practitioners to better promote its implementation in IC.
文摘为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。