AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the light...AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the lightweight MobileNetV2 model structure to construct a tri-classification model.The study used 1220 images of three types of anterior ocular segments of the pterygium provided by the Eye Hospital of Nanjing Medical University.Conventional classification models—VGG16,ResNet50,MobileNetV2,and EfficientNetB7—were trained on the same dataset for comparison.To evaluate model performance in terms of accuracy,Kappa value,test time,sensitivity,specificity,the area under curve(AUC),and visual heat map,470 test images of the anterior segment of the pterygium were used.RESULTS:The accuracy of the MobileNetV2+Self-Attention model with 281 MB in model size was 92.77%,and the Kappa value of the model was 88.92%.The testing time using the model was 9ms/image in the server and 138ms/image in the local computer.The sensitivity,specificity,and AUC for the diagnosis of pterygium using normal anterior segment images were 99.47%,100%,and 100%,respectively;using anterior segment images in the observation period were 88.30%,95.32%,and 96.70%,respectively;and using the anterior segment images in the surgery period were 88.18%,94.44%,and 97.30%,respectively.CONCLUSION:The developed model is lightweight and can be used not only for detection but also for assessing the severity of pterygium.展开更多
The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was...The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was first implemented in the banking sector,to AI governance in an effort to reduce the conflict between regulation and innovation.The AI regulatory sandbox is a new and feasible route for AI governance in China that not only helps to manage the risks of technology application but also prevents inhibiting AI innovation.It keeps inventors'trial-and-error tolerance space inside the regulatory purview while offering a controlled setting for the development and testing of novel AI that hasn't yet been put on the market.By providing full-cycle governance of AI with the principles of agility and inclusive prudence,the regulatory sandbox offers an alternative to the conventional top-down hard regulation,expost regulation,and tight regulation.However,the current system also has inherent limitations and practical obstacles that need to be overcome by a more rational and effective approach.To achieve its positive impact on AI governance,the AI regulatory sandbox system should build and improve the access and exit mechanism,the coordination mechanism between the sandbox and personal information protection,and the mechanisms of exemption,disclosure,and communication.展开更多
In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to ...In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.展开更多
Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.Fo...The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.展开更多
In this paper, we conduct research on the big data and the artificial intelligence aided decision-making mechanism with the applications on video website homemade program innovation. Make homemade video shows new medi...In this paper, we conduct research on the big data and the artificial intelligence aided decision-making mechanism with the applications on video website homemade program innovation. Make homemade video shows new media platform site content production with new possible, as also make the traditional media found in Internet age, the breakthrough point of the times. Site homemade video program, which is beneficial to reduce copyright purchase demand, reduce the cost, avoid the homogeneity competition, rich advertising marketing at the same time, improve the profit pattern, the organic combination of content production and operation, complete the strategic transformation. On the basis of these advantages, once the site of homemade video program to form a brand and a higher brand influence. Our later research provides the literature survey for the related issues.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor...Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.展开更多
BACKGROUND:To promote the shared decision-making(SDM)between patients and doctors in pediatric outpatient departments,this study was designed to validate artificial intelligence(AI)-initiated medical tests for childre...BACKGROUND:To promote the shared decision-making(SDM)between patients and doctors in pediatric outpatient departments,this study was designed to validate artificial intelligence(AI)-initiated medical tests for children with fever.METHODS:We designed an AI model,named Xiaoyi,to suggest necessary tests for a febrile child before visiting a pediatric outpatient clinic.We calculated the sensitivity,specificity,and F1 score to evaluate the efficacy of Xiaoyi’s recommendations.The patients were divided into the rejection and acceptance groups.Then we analyzed the rejected examination items in order to obtain the corresponding reasons.RESULTS:We recruited a total of 11,867 children with fever who had used Xiaoyi in outpatient clinics.The recommended examinations given by Xiaoyi for 10,636(89.6%)patients were qualified.The average F1 score reached 0.94.A total of 58.4%of the patients accepted Xiaoyi’s suggestions(acceptance group),and 41.6%refused(rejection group).Imaging examinations were rejected by most patients(46.7%).The tests being time-consuming were rejected by 2,133 patients(43.2%),including rejecting pathogen studies in 1,347 patients(68.5%)and image studies in 732 patients(31.8%).The difficulty of sampling was the main reason for rejecting routine tests(41.9%).CONCLUSION:Our model has high accuracy and acceptability in recommending medical tests to febrile pediatric patients,and is worth promoting in facilitating SDM.展开更多
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a...Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.展开更多
Previous studies have demonstrated that reactions to unfair offers in the ultimatum game are correlated with negative emotion. However, little is known about the difference in neural activity between a proposer's dec...Previous studies have demonstrated that reactions to unfair offers in the ultimatum game are correlated with negative emotion. However, little is known about the difference in neural activity between a proposer's decision-making in the ultimatum game compared with the dictator game. The present functional magnetic resonance imaging study revealed that proposing fair offers in the dictator game elicited greater activation in the right supramarginal gyrus, right medial frontal gyrus and left anterior cingulate cortex compared with proposing fair offers in the ultimatum game in 23 Chinese undergraduate and graduate students from Beijing Normal University in China. However, greater activation was found in the right superior temporal gyrus and left cingulate gyrus for the reverse contrast. "The results indicate that proposing fair offers in the dictator game is more strongly associated with cognitive control and conflicting information processing compared with proposing fair offers in the ultimatum game.展开更多
The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible durin...The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible during the design process from the designer-oriented perspective of view. Design for X-abilities (DFX) is an effective approach to this philosophy. So the paper mainly presents the infrastructure of an intelligent DFX mechanism which is the essential part of the developed product design environment. At first the designer-oriented computer environment DesignerSpace is introduced for understanding the designer how to implement design activities and DFX method better. In order to integrate design knowledge from downstream aspects for the optimization and the design decision-making, an intelligent DFX mechanism is developed to incorporate knowledge base, algorithm-base and monitoring/debugging tools. DesignerSpace is implemented with DFX abilities and applied to the blisk design of aircraft engine and the further development is strongly intended.展开更多
Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot ...Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.展开更多
A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time ...A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time domain by the coordinated rotation digital computer(CORDIC) algorithm based on the extended convergence domain and feature parameters of frequency spectrum and power spectrum are extracted by the time-frequency analysis method.All pattern identification parameters are calculated under the I/Q orthogonal two-channel structure,and constructed into the feature vector set.Next,the classifier is designed according to the modulation pattern and recognition performance of the feature parameter set,the optimum threshold is selected for each feature parameter based on the decision-making mechanism in a single classifier,multi-source information fusion and modulation recognition are realized based on feature parameter judge process in the NNIC.Simulation results show NNIC is competent for all modulation recognitions,8 kinds of digital modulated signals are effectively identified,which shows the recognition rate and anti-interference capability at low SNR are improved greatly,the overall recognition rate can reach 100%when SNR is12dB.展开更多
Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc...Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc. Is proposed. The antibody generation method based on the sequence constraints and the coding rule of antibody for the machining procedure is also presented. Using the heuristic antibody generation method based on the physiology immune mechanism, the validity of the scheduling optimization is improved, and based on the immune and expert system under the event-driven constraints, not only Job-shop scheduling problem with multi-objective can be solved, but also the disturbance of the production be handled rapidly. A case of the job-shop scheduling is studied and dynamic optimal solutions with multi-objective function for agile manufacturing are obtained in this paper. And the event-driven dynamic rescheduling result is compared with right-shift rescheduling and total rescheduling.展开更多
Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as...Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.展开更多
A new synthetic model of maintenance decision-making, which is made by anartificial neural network (ANN) , expert system (ES) and emulation technology, is put forward. Bymeans of this model all kinds of maintenance re...A new synthetic model of maintenance decision-making, which is made by anartificial neural network (ANN) , expert system (ES) and emulation technology, is put forward. Bymeans of this model all kinds of maintenance resources with low cost can be effectively harmonized;accordingly, the reliability, maintenance efficiency and quality of equipment can be improved, soservice life of equipments is enhanced.展开更多
Based on common characteristics in crane design, a new procedure of intelligent CAD for crane travelling mechanisms is proposed. The CAD used for crane travelling mechanisms is usually involved in choosing electrical ...Based on common characteristics in crane design, a new procedure of intelligent CAD for crane travelling mechanisms is proposed. The CAD used for crane travelling mechanisms is usually involved in choosing electrical motors.gear reducers,brakes and couplings, arranging travelling wheels and equilibrium beams.checking temperature increase of motors and slippage of driving wheels,estimating the time used for starting and stopping the cranes, drawing up the travelling mechanism.and so on. By enhancing the CAD, the related expert system and overall intelligent con trol are further developed here in treated as individual module. Accordingly,the intelligent CAD is constructed by combing the CAD with the two modules.展开更多
Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF iron...Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.展开更多
Intelligent virtual control (IVC) is an intelligent measurement instrumentunit with the function of actual measurement instruments, and the unit can be used as basic buildingblock for a variety of more complex virtual...Intelligent virtual control (IVC) is an intelligent measurement instrumentunit with the function of actual measurement instruments, and the unit can be used as basic buildingblock for a variety of more complex virtual measurement instruments on a PC. IVC is a furtheradvancement from virtual instrument (VI), and it fuses the function modules and the controls modulesso that the relationship between the functions and controls of an instrument is imbedded in one ormore units. The design, implementation and optimization methods of IVCs are introduced. The computersoftware representation of IVCs is discussed. An example of an actual VI constructed with thebuilding blocks of IVCs is given.展开更多
基金Supported by the National Natural Science Foundation of China(No.61906066)Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202147191)+2 种基金Huzhou University Graduate Research Innovation Project(No.2020KYCX21)Sanming Project of Medicine in Shenzhen(SZSM202311012)Shenzhen Science and Technology Program(No.JCYJ20220530153604010).
文摘AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the lightweight MobileNetV2 model structure to construct a tri-classification model.The study used 1220 images of three types of anterior ocular segments of the pterygium provided by the Eye Hospital of Nanjing Medical University.Conventional classification models—VGG16,ResNet50,MobileNetV2,and EfficientNetB7—were trained on the same dataset for comparison.To evaluate model performance in terms of accuracy,Kappa value,test time,sensitivity,specificity,the area under curve(AUC),and visual heat map,470 test images of the anterior segment of the pterygium were used.RESULTS:The accuracy of the MobileNetV2+Self-Attention model with 281 MB in model size was 92.77%,and the Kappa value of the model was 88.92%.The testing time using the model was 9ms/image in the server and 138ms/image in the local computer.The sensitivity,specificity,and AUC for the diagnosis of pterygium using normal anterior segment images were 99.47%,100%,and 100%,respectively;using anterior segment images in the observation period were 88.30%,95.32%,and 96.70%,respectively;and using the anterior segment images in the surgery period were 88.18%,94.44%,and 97.30%,respectively.CONCLUSION:The developed model is lightweight and can be used not only for detection but also for assessing the severity of pterygium.
文摘The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was first implemented in the banking sector,to AI governance in an effort to reduce the conflict between regulation and innovation.The AI regulatory sandbox is a new and feasible route for AI governance in China that not only helps to manage the risks of technology application but also prevents inhibiting AI innovation.It keeps inventors'trial-and-error tolerance space inside the regulatory purview while offering a controlled setting for the development and testing of novel AI that hasn't yet been put on the market.By providing full-cycle governance of AI with the principles of agility and inclusive prudence,the regulatory sandbox offers an alternative to the conventional top-down hard regulation,expost regulation,and tight regulation.However,the current system also has inherent limitations and practical obstacles that need to be overcome by a more rational and effective approach.To achieve its positive impact on AI governance,the AI regulatory sandbox system should build and improve the access and exit mechanism,the coordination mechanism between the sandbox and personal information protection,and the mechanisms of exemption,disclosure,and communication.
文摘In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金supported by the National Natural Science Foundation of China(Grant No.52021005)Outstanding Youth Foundation of Shandong Province of China(Grant No.ZR2021JQ22)Taishan Scholars Program of Shandong Province of China(Grant No.tsqn201909003)。
文摘The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.
文摘In this paper, we conduct research on the big data and the artificial intelligence aided decision-making mechanism with the applications on video website homemade program innovation. Make homemade video shows new media platform site content production with new possible, as also make the traditional media found in Internet age, the breakthrough point of the times. Site homemade video program, which is beneficial to reduce copyright purchase demand, reduce the cost, avoid the homogeneity competition, rich advertising marketing at the same time, improve the profit pattern, the organic combination of content production and operation, complete the strategic transformation. On the basis of these advantages, once the site of homemade video program to form a brand and a higher brand influence. Our later research provides the literature survey for the related issues.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This research was funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.
基金This study was supported by the Science and Technology Innovation-Biomedical Supporting Program of Shanghai Science and Technology Committee(19441904400)Program for artificial intelligence innovation and development of Shanghai Municipal Commission of Economy and Informatization(2020-RGZN-02048).
文摘BACKGROUND:To promote the shared decision-making(SDM)between patients and doctors in pediatric outpatient departments,this study was designed to validate artificial intelligence(AI)-initiated medical tests for children with fever.METHODS:We designed an AI model,named Xiaoyi,to suggest necessary tests for a febrile child before visiting a pediatric outpatient clinic.We calculated the sensitivity,specificity,and F1 score to evaluate the efficacy of Xiaoyi’s recommendations.The patients were divided into the rejection and acceptance groups.Then we analyzed the rejected examination items in order to obtain the corresponding reasons.RESULTS:We recruited a total of 11,867 children with fever who had used Xiaoyi in outpatient clinics.The recommended examinations given by Xiaoyi for 10,636(89.6%)patients were qualified.The average F1 score reached 0.94.A total of 58.4%of the patients accepted Xiaoyi’s suggestions(acceptance group),and 41.6%refused(rejection group).Imaging examinations were rejected by most patients(46.7%).The tests being time-consuming were rejected by 2,133 patients(43.2%),including rejecting pathogen studies in 1,347 patients(68.5%)and image studies in 732 patients(31.8%).The difficulty of sampling was the main reason for rejecting routine tests(41.9%).CONCLUSION:Our model has high accuracy and acceptability in recommending medical tests to febrile pediatric patients,and is worth promoting in facilitating SDM.
文摘Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.
基金supported by the National Laboratory of Cognitive Neuroscience and Learning at Beijing Normal University (the 973 program),No. 2010CB8339004the National Natural Science Foundation of China,No. 30970911+1 种基金the Fundamental Research Fund for the Central Universities,No.SWJTU11BR192the Humanity and Social Science Youth foundation of Ministry of Education of China,No. 12YJC630317
文摘Previous studies have demonstrated that reactions to unfair offers in the ultimatum game are correlated with negative emotion. However, little is known about the difference in neural activity between a proposer's decision-making in the ultimatum game compared with the dictator game. The present functional magnetic resonance imaging study revealed that proposing fair offers in the dictator game elicited greater activation in the right supramarginal gyrus, right medial frontal gyrus and left anterior cingulate cortex compared with proposing fair offers in the ultimatum game in 23 Chinese undergraduate and graduate students from Beijing Normal University in China. However, greater activation was found in the right superior temporal gyrus and left cingulate gyrus for the reverse contrast. "The results indicate that proposing fair offers in the dictator game is more strongly associated with cognitive control and conflicting information processing compared with proposing fair offers in the ultimatum game.
文摘The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible during the design process from the designer-oriented perspective of view. Design for X-abilities (DFX) is an effective approach to this philosophy. So the paper mainly presents the infrastructure of an intelligent DFX mechanism which is the essential part of the developed product design environment. At first the designer-oriented computer environment DesignerSpace is introduced for understanding the designer how to implement design activities and DFX method better. In order to integrate design knowledge from downstream aspects for the optimization and the design decision-making, an intelligent DFX mechanism is developed to incorporate knowledge base, algorithm-base and monitoring/debugging tools. DesignerSpace is implemented with DFX abilities and applied to the blisk design of aircraft engine and the further development is strongly intended.
基金supported in part by the Beijing Municipal Science and Technology Project(No.Z191100007419010)Automobile Industry Joint Fund(No.U1764261)of the National Natural Science Foundation of China+1 种基金Shandong Key R&D Program(No.2020CXGC010118)Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province(No.BM20082061706)。
文摘Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.
基金Supported by the National Natural Science Foundation of China(No.61001049)Key Laboratory of Computer Architecture Opening Topic Fund Subsidization(CARCH201103)Beijing Natural Science Foundation(No.Z2002012201101)
文摘A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time domain by the coordinated rotation digital computer(CORDIC) algorithm based on the extended convergence domain and feature parameters of frequency spectrum and power spectrum are extracted by the time-frequency analysis method.All pattern identification parameters are calculated under the I/Q orthogonal two-channel structure,and constructed into the feature vector set.Next,the classifier is designed according to the modulation pattern and recognition performance of the feature parameter set,the optimum threshold is selected for each feature parameter based on the decision-making mechanism in a single classifier,multi-source information fusion and modulation recognition are realized based on feature parameter judge process in the NNIC.Simulation results show NNIC is competent for all modulation recognitions,8 kinds of digital modulated signals are effectively identified,which shows the recognition rate and anti-interference capability at low SNR are improved greatly,the overall recognition rate can reach 100%when SNR is12dB.
基金This work was supported by National Science Foundation of Shanghai(02ZF14003)
文摘Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc. Is proposed. The antibody generation method based on the sequence constraints and the coding rule of antibody for the machining procedure is also presented. Using the heuristic antibody generation method based on the physiology immune mechanism, the validity of the scheduling optimization is improved, and based on the immune and expert system under the event-driven constraints, not only Job-shop scheduling problem with multi-objective can be solved, but also the disturbance of the production be handled rapidly. A case of the job-shop scheduling is studied and dynamic optimal solutions with multi-objective function for agile manufacturing are obtained in this paper. And the event-driven dynamic rescheduling result is compared with right-shift rescheduling and total rescheduling.
文摘Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.
文摘A new synthetic model of maintenance decision-making, which is made by anartificial neural network (ANN) , expert system (ES) and emulation technology, is put forward. Bymeans of this model all kinds of maintenance resources with low cost can be effectively harmonized;accordingly, the reliability, maintenance efficiency and quality of equipment can be improved, soservice life of equipments is enhanced.
文摘Based on common characteristics in crane design, a new procedure of intelligent CAD for crane travelling mechanisms is proposed. The CAD used for crane travelling mechanisms is usually involved in choosing electrical motors.gear reducers,brakes and couplings, arranging travelling wheels and equilibrium beams.checking temperature increase of motors and slippage of driving wheels,estimating the time used for starting and stopping the cranes, drawing up the travelling mechanism.and so on. By enhancing the CAD, the related expert system and overall intelligent con trol are further developed here in treated as individual module. Accordingly,the intelligent CAD is constructed by combing the CAD with the two modules.
基金financially supported by the General Program of the National Natural Science Foundation of China(No.52274326)the Fundamental Research Funds for the Central Universities (Nos.2125018 and 2225008)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202109)。
文摘Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.
基金This project is supported by National Natural Science Foundation of China (No.50135050).
文摘Intelligent virtual control (IVC) is an intelligent measurement instrumentunit with the function of actual measurement instruments, and the unit can be used as basic buildingblock for a variety of more complex virtual measurement instruments on a PC. IVC is a furtheradvancement from virtual instrument (VI), and it fuses the function modules and the controls modulesso that the relationship between the functions and controls of an instrument is imbedded in one ormore units. The design, implementation and optimization methods of IVCs are introduced. The computersoftware representation of IVCs is discussed. An example of an actual VI constructed with thebuilding blocks of IVCs is given.