期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Review of intelligent diagnosis methods for imaging gland cancer based on machine learning 被引量:1
1
作者 Han JIANG Wenjia SUN +3 位作者 Hanfei GUO Jiayuan ZENG Xin XUE Shuai LI 《Virtual Reality & Intelligent Hardware》 EI 2023年第4期293-316,共24页
Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine l... Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine learning techniques has yielded satisfactory results in intelligent gland cancer diagnosis based on clinical images,significantly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors.The focus of this study is to review,classify,and analyze intelligent diagnosis methods for imaging gland cancer based on machine learning and deep learning.This paper briefly introduces some basic imaging principles of multimodal medical images,such as the commonly used computed tomography(CT),magnetic resonance imaging(MRI),ultrasound(US),positron emission tomography(PET),and pathology.In addition,the intelligent diagnosis methods for imaging gland cancer were further classified into supervised learning and weakly supervised learning.Supervised learning consists of traditional machine learning methods,such as K-nearest neighbor algorithm(KNN),support vector machine(SVM),and multilayer perceptron,and deep learning methods evolving from convolutional neural network(CNN).By contrast,weakly supervised learning can be further categorized into active learning,semisupervised learning,and transfer learning.State-of-the-art methods are illustrated with implementation details,including image segmentation,feature extraction,and optimization of classifiers.Their performances are evaluated through indicators,such as accuracy,precision,and sensitivity.In conclusion,the challenges and development trends of intelligent diagnosis methods for imaging gland cancer were addressed and discussed. 展开更多
关键词 Gland cancer intelligent diagnosis Machine learning Deep learning Multimodal medical images
下载PDF
Intelligent diagnosis of northern corn leaf blight with deep learning model 被引量:3
2
作者 PAN Shuai-qun QIAO Jing-fen +4 位作者 WANG Rui YU Hui-lin WANG Cheng Kerry TAYLOR PAN Hong-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第4期1094-1105,共12页
Maize(Zea mays L.), also known as corn, is the third most cultivated crop in the world. Northern corn leaf blight(NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica(Luttrell) Leonard a... Maize(Zea mays L.), also known as corn, is the third most cultivated crop in the world. Northern corn leaf blight(NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica(Luttrell) Leonard and Suggs. Early intelligent diagnosis and warning is an effective and economical strategy to control this disease. Today, deep learning is beginning to play an essential role in agriculture. Notably, deep convolutional neural networks(DCNN) are amongst the most successful machine learning techniques in plant disease detection and diagnosis. Our study aims to identify NCLB in the maize-producing area in Jilin Province based on several DCNN models. We established a database of 985 leaf images of healthy and infected maize and applied data augmentation techniques including image segmentation, image resizing, image cropping, and image transformation, to expand to 30 655 images. Several proven convolutional neural networks, such as AlexNet, Google Net, VGG16, and VGG19, were then used to identify diseases. Based on the best performance of the DCNN pre-trained model Google Net, some of the recent loss functions developed for deep facial recognition tasks such as Arc Face, Cos Face, and A-Softmax were applied to detect NCLB. We found that a pre-trained Google Net architecture with the Softmax loss function can achieve an excellent accuracy of 99.94% on NCLB diagnosis. The analysis was implemented in Python with two deep learning frameworks, Pytorch and Keras. The techniques, training, validation, and test results are presented in this paper. Overall, our study explores intelligent identification technology for NCLB and effectively diagnoses NCLB from images of maize. 展开更多
关键词 MAIZE northern corn leaf blight Setosphaeria turcica intelligent diagnosis deep learning convolutional neural network
下载PDF
Method of Mechanical Fault Intelligent Diagnosis Based on Vibration Signal of High Voltage Circuit Breaker 被引量:1
3
作者 YANG Zhuangzhuang LIU Yang +3 位作者 ZHOU Guoming LIN Xin JI Tian LI Bin 《高压电器》 CAS CSCD 北大核心 2014年第4期1-6,共6页
Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(S... Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(SVM)to construct classifier for fault diagnosis is presented.The acceleration sensors are applied to collecting the vibration data of different states of high voltage circuit breakers based on self-made experimental platform in this method.The wavelet packet are fully applied to analyze the vibration signal and decompose vibration signal into three layers,and wavelet packet energy entropy of each frequency band are as the characteristic vector of circuit breaker failure mode.Then the intelligent diagnosis network is established on the basis of the support vector machine theory.It is verified that the method has a better capability of classification and a higher accuracy compared with the traditional neural network diagnosis method through distinguishing the three fault modes which are tripping device stuck,the vacuum arcing chamber fixed bolt looseness and too much friction force of the transmission mechanism of circuit breaker in this paper. 展开更多
关键词 SVM energy entropy high voltage circuit breaker intelligent diagnosis
下载PDF
Clinical Intelligent Diagnosis Path Based on the Chief Complaint 被引量:3
4
作者 ZHOU Xiao-Qing TONG Tian-Hao +1 位作者 ZENG Yi-Di ZHONG Lu 《Digital Chinese Medicine》 2020年第1期44-49,共6页
Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicine... Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicines system and derivation of an accurate diagnosis and treatment plan should be considerations of TCM.Artificial intelligence research based on computer technology is one of the effective ways to solve this problem.In the research of intelligent diagnosis path,reflecting the characteristics of the overall view and dialectical treatment of TCM such as"Combination of four diagnostic methods""overall examination""combination of disease and syndrome"and"treatment individualized to patient,season and locality"are key for successful research of artificial intelligence in TCM diagnosis or recognition by clinical practice. 展开更多
关键词 Chief complaint intelligent diagnosis TCM diagnosis Correlation analysis Combination of four diagnostic methods Symptom pair Symptom group
下载PDF
Design and Application of Intelligent Diagnosis System for three Pumping Stations of Stamping Automation
5
作者 Shidong Tang Zhaoyang He +4 位作者 Youling Zhao Anyong Fang Kang Li Lei Mei Yongwei Tao 《Journal of Electronic Research and Application》 2021年第1期8-11,共4页
This paper focuses on the maintenance of automotive stamping automation equipment.Through long-term self-study and accumulated experience,we independently developed a process monitoring system based on the three pumpi... This paper focuses on the maintenance of automotive stamping automation equipment.Through long-term self-study and accumulated experience,we independently developed a process monitoring system based on the three pumping stations of clutch,tension pad and lubrication in the stamping automation production line,which is used for real-time monitoring and diagnosis in the automatic production process without stopping the machine,and for the detection of oil temperature change,high-pressure pipeline leakage and oil return pipe In this paper,the improved case has strong practicability,low development cost,and has been recognized by peers in terms of cost efficiency improvement,which is easy to be popularized. 展开更多
关键词 intelligent diagnosis HMI process monit-oring Stamping automation Hydraulic lubrication system
下载PDF
Intelligent Diagnosis of Short Hydraulic Signal Based on Improved EEMD and SVM with Few Low-dimensional Training Samples 被引量:10
6
作者 ZHANG Meijun TANG Jian +1 位作者 ZHANG Xiaoming ZHANG Jiaojiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期396-405,共10页
The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extra... The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults. 展开更多
关键词 hydraulic impact fault improved EEMD end effect overshoot-undershoot SVM intelligent fault diagnosis short signal
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
7
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
Review of research on intelligent diagnosis of oil transfer pump malfunction 被引量:1
8
作者 Liangliang Dong Qian Xiao +1 位作者 Yanjie Jia Tianhai Fang 《Petroleum》 EI CSCD 2023年第2期135-142,共8页
Oil transfer pump is the key dynamic equipment in the process of oil and gas gathering and transportation,and its working reliability directly affects the safety of oil and gas storage and transportation.Intelligent d... Oil transfer pump is the key dynamic equipment in the process of oil and gas gathering and transportation,and its working reliability directly affects the safety of oil and gas storage and transportation.Intelligent diagnosis is a key technical method to reduce failure rate of oil transfer pump,ensure the safety of gathering and transportation process,and avoid major safety accidents caused by oil transfer pump failure.Various oil transfer pumps have been emerged in recent decades,and the common fault types and characteristics of oil transfer pump have been brought out in the review.This article highlights on the research of the fault signal and processing methods of oil transfer pump.Firstly,the fault signal of the oil transfer pump is discussed and the advantages and disadvantages of different signal extraction are analyzed.Secondly,the intelligent diagnosis method of oil transfer pump and the shortcomings of the existing methods are pointed out.Finally,the conclusions are given and the future development perspectives of oil transfer pumps are suggested.The main contribution of this review is to give a syn-thetic understanding on oil transfer pumps. 展开更多
关键词 intelligent diagnosis Oil transfer pump Development trend
原文传递
Intelligent diagnostic model for pterygium by combining attention mechanism and MobileNetV2
9
作者 Mao-Nian Wu Kai He +5 位作者 Yi-Bei Yu Bo Zheng Shao-Jun Zhu Xiang-Qian Hong Wen-Qun Xi Zhe Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1184-1192,共9页
AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the light... AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the lightweight MobileNetV2 model structure to construct a tri-classification model.The study used 1220 images of three types of anterior ocular segments of the pterygium provided by the Eye Hospital of Nanjing Medical University.Conventional classification models—VGG16,ResNet50,MobileNetV2,and EfficientNetB7—were trained on the same dataset for comparison.To evaluate model performance in terms of accuracy,Kappa value,test time,sensitivity,specificity,the area under curve(AUC),and visual heat map,470 test images of the anterior segment of the pterygium were used.RESULTS:The accuracy of the MobileNetV2+Self-Attention model with 281 MB in model size was 92.77%,and the Kappa value of the model was 88.92%.The testing time using the model was 9ms/image in the server and 138ms/image in the local computer.The sensitivity,specificity,and AUC for the diagnosis of pterygium using normal anterior segment images were 99.47%,100%,and 100%,respectively;using anterior segment images in the observation period were 88.30%,95.32%,and 96.70%,respectively;and using the anterior segment images in the surgery period were 88.18%,94.44%,and 97.30%,respectively.CONCLUSION:The developed model is lightweight and can be used not only for detection but also for assessing the severity of pterygium. 展开更多
关键词 deep learning attention mechanism PTERYGIUM intelligent diagnosis
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
10
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Artificial intelligence assisted pterygium diagnosis:current status and perspectives 被引量:3
11
作者 Bang Chen Xin-Wen Fang +7 位作者 Mao-Nian Wu Shao-Jun Zhu Bo Zheng Bang-Quan Liu Tao Wu Xiang-Qian Hong Jian-Tao Wang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第9期1386-1394,共9页
Pterygium is a prevalent ocular disease that can cause discomfort and vision impairment.Early and accurate diagnosis is essential for effective management.Recently,artificial intelligence(AI)has shown promising potent... Pterygium is a prevalent ocular disease that can cause discomfort and vision impairment.Early and accurate diagnosis is essential for effective management.Recently,artificial intelligence(AI)has shown promising potential in assisting clinicians with pterygium diagnosis.This paper provides an overview of AI-assisted pterygium diagnosis,including the AI techniques used such as machine learning,deep learning,and computer vision.Furthermore,recent studies that have evaluated the diagnostic performance of AI-based systems for pterygium detection,classification and segmentation were summarized.The advantages and limitations of AI-assisted pterygium diagnosis and discuss potential future developments in this field were also analyzed.The review aims to provide insights into the current state-of-the-art of AI and its potential applications in pterygium diagnosis,which may facilitate the development of more efficient and accurate diagnostic tools for this common ocular disease. 展开更多
关键词 PTERYGIUM intelligent diagnosis artificial intelligence deep learning machine learning
下载PDF
Intelligent diagnosis of jaundice with dynamic uncertain causality graph model
12
作者 Shao-rui HAO Shi-chao GENG +3 位作者 Lin-xiao FAN Jia-jia CHEN Qin ZHANG Lan-juan LI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2017年第5期393-401,共9页
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause o... Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic rea- soning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. 展开更多
关键词 JAUNDICE intelligent diagnosis Dynamic uncertain causality graph Expert system
原文传递
Efficacy of intelligent diagnosis with a dynamic uncertain causality graph model for rare disorders of sex development
13
作者 Dongping Ning Zhan Zhang +4 位作者 Kun Qiu Lin Lu Qin Zhang Yan Zhu Renzhi Wang 《Frontiers of Medicine》 SCIE CAS CSCD 2020年第4期498-505,共8页
Disorders of sex development(DSD)are a group of rare complex clinical syndromes with multiple etiologies.Distinguishing the various causes of DSD is quite difficult in clinical practice,even for senior general physici... Disorders of sex development(DSD)are a group of rare complex clinical syndromes with multiple etiologies.Distinguishing the various causes of DSD is quite difficult in clinical practice,even for senior general physicians because of the similar and atypical clinical manifestations of these conditions.In addition,DSD are difficult to diagnose because most primary doctors receive insufficient training for DSD.Delayed diagnoses and misdiagnoses are common for patients with DSD and lead to poor treatment and prognoses.On the basis of the principles and algorithms of dynamic uncertain causality graph(DUCG),a diagnosis model for DSD was jointly constructed by experts on DSD and engineers of artificial intelligence.“Chaining”inference algorithm and weighted logic operation mechanism were applied to guarantee the accuracy and efficiency of diagnostic reasoning under incomplete situations and uncertain information.Verification was performed using 153 selected clinical cases involving nine common DSD-related diseases and three causes other than DSD as the differential diagnosis.The model had an accuracy of 94.1%,which was significantly higher than that of interns and third-year residents.In conclusion,the DUCG model has broad application prospects as a computer-aided diagnostic tool for DSDrelated diseases. 展开更多
关键词 disorders of sex development(DSD) intelligent diagnosis dynamic uncertain causality graph
原文传递
Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis
14
作者 Ahmad Alassaf 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2773-2789,共17页
Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extra... Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models.On the other hand,skin lesionbased segregation and disintegration procedures play an essential role in earlier skin cancer detection.However,artefacts,an unclear boundary,poor contrast,and different lesion sizes make detection difficult.To address the issues in skin lesion diagnosis,this study creates the UDLS-DDOA model,an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder(UDLS)optimized by Dynamic Differential Annealed Optimization(DDOA).Pre-processing,segregation,feature removal or separation,and disintegration are part of the proposed skin lesion diagnosis model.Pre-processing of skin lesion images occurs at the initial level for noise removal in the image using the Top hat filter and painting methodology.Following that,a Fuzzy C-Means(FCM)segregation procedure is performed using a Quasi-Oppositional Elephant Herd Optimization(QOEHO)algorithm.Besides,a novel feature extraction technique using the UDLS technique is applied where the parameter tuning takes place using DDOA.In the end,the disintegration procedure would be accomplished using a SoftMax(SM)classifier.The UDLS-DDOA model is tested against the International Skin Imaging Collaboration(ISIC)dataset,and the experimental results are examined using various computational attributes.The simulation results demonstrated that the UDLS-DDOA model outperformed the compared methods significantly. 展开更多
关键词 intelligent diagnosis stacked auto-encoder skin lesion unsupervised learning parameter selection
下载PDF
The Research on Hybrid Intelligent Fault-diagnosisSystem of CNC Machine Tools
15
作者 WANG Runxiao ZHOU Hui +1 位作者 QIN Xiansheng JIAN Chongjun 《International Journal of Plant Engineering and Management》 2000年第4期129-135,共7页
After analyzing the structure and characteristics of the hybrid intelligent diagnosis system of CNC machine toolsCNC-HIDS), we describe the intelligent hybrid mechanism of the CNC-HIDS, and present the evaluation and ... After analyzing the structure and characteristics of the hybrid intelligent diagnosis system of CNC machine toolsCNC-HIDS), we describe the intelligent hybrid mechanism of the CNC-HIDS, and present the evaluation and the running instance of the system. Through tryout and validation, we attain satisfactory results. 展开更多
关键词 CNC machine tools hybrid mechanism intelligent diagnosis machine fault
下载PDF
Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning 被引量:6
16
作者 Guo-Qian Jiang Ping Xie +2 位作者 Xiao Wang Meng Chen Qun He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1314-1324,共11页
The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowle... The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches. 展开更多
关键词 intelligent fault diagnosis Vibration signals Unsupervised feature learning Sparse filtering Multiscalefeature extraction
下载PDF
A novel sparse filtering approach based on time-frequency feature extraction and softmax regression for intelligent fault diagnosis under different speeds 被引量:6
17
作者 ZHANG Zhong-wei CHEN Huai-hai +1 位作者 LI Shun-ming WANG Jin-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1607-1618,共12页
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects... Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods. 展开更多
关键词 intelligent fault diagnosis short time Fourier transform sparse filtering softmax regression
下载PDF
Intelligent fault diagnosis methods toward gas turbine: A review
18
作者 Xiaofeng LIU Yingjie CHEN +4 位作者 Liuqi XIONG Jianhua WANG Chenshuang LUO Liming ZHANG Kehuan WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期93-120,共28页
Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling e... Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling engine systems or certain components implement faults detection and diagnosis based on the measurement of systemic parameters deviations. However, these conventional model-based methods are hindered by limitations of inability to handle the nonlinear nature, measurement uncertainty, fault coupling and other implementing problems. Recently, the development of artificial intelligence algorithms has provided an effective solution to the above problems, triggering broad researches for data-driven fault diagnosis methods with better accuracy,dynamic performance, and universality. This paper presents a systematic review of recently proposed intelligent fault diagnosis methods for GT engines, according to the classification of shallow learning methods, deep learning methods and hybrid intelligent methods. Moreover, the principle of typical algorithms, the evolution of enhanced methods, and the assessment of pros and cons are summarized to conclude the present status and look forward to the future in the field of GT fault diagnosis. Possible directions for development in method validation, information fusion, and interpretability of intelligent diagnosis methods are concluded in the end to provide insightful concepts for scholars in related fields. 展开更多
关键词 Fault diagnosis Health management Gas turbine Artificial intelligence intelligent diagnosis method
原文传递
Privacy-Preserving Federated Deep Learning Diagnostic Method for Multi-Stage Diseases
19
作者 Jinbo Yang Hai Huang +2 位作者 Lailai Yin Jiaxing Qu Wanjuan Xie 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3085-3099,共15页
Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources,including clinical symptoms,physical signs,biochemical test results,imaging findings,pathological examination data,and even ... Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources,including clinical symptoms,physical signs,biochemical test results,imaging findings,pathological examination data,and even genetic data.When applying machine learning modeling to predict and diagnose multi-stage diseases,several challenges need to be addressed.Firstly,the model needs to handle multimodal data,as the data used by doctors for diagnosis includes image data,natural language data,and structured data.Secondly,privacy of patients’data needs to be protected,as these data contain the most sensitive and private information.Lastly,considering the practicality of the model,the computational requirements should not be too high.To address these challenges,this paper proposes a privacy-preserving federated deep learning diagnostic method for multi-stage diseases.This method improves the forward and backward propagation processes of deep neural network modeling algorithms and introduces a homomorphic encryption step to design a federated modeling algorithm without the need for an arbiter.It also utilizes dedicated integrated circuits to implement the hardware Paillier algorithm,providing accelerated support for homomorphic encryption in modeling.Finally,this paper designs and conducts experiments to evaluate the proposed solution.The experimental results show that in privacy-preserving federated deep learning diagnostic modeling,the method in this paper achieves the same modeling performance as ordinary modeling without privacy protection,and has higher modeling speed compared to similar algorithms. 展开更多
关键词 Vertical federation homomorphic encryption deep neural network intelligent diagnosis machine learning and big data
下载PDF
Deep learning-based recognition of stained tongue coating images
20
作者 ZHONG Liqin XIN Guojiang +3 位作者 PENG Qinghua CUI Ji ZHU Lei LIANG Hao 《Digital Chinese Medicine》 CAS CSCD 2024年第2期129-136,共8页
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of s... Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis. 展开更多
关键词 Deep learning Tongue coating Stained coating Image recognition Traditional Chinese medicine(TCM) intelligent diagnosis
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部