Agents are the new defacto standard for inclusion in modules of today’s software systems such as ERP systems, mobile applications and operating systems. Agents are an integral part of today’s software design. The qu...Agents are the new defacto standard for inclusion in modules of today’s software systems such as ERP systems, mobile applications and operating systems. Agents are an integral part of today’s software design. The question is how do intelligent agents work in the specific area of ERP credit card processing e-commerce models? To answer this question, a specific area of ERP systems will be analyzed: credit card processing for merchants. One specific merchant credit card processor will be specifically investigated: EVO Merchants. This paper will research how exactly does ERP systems interact using Application Programing Interface or “API” specified by a credit card clearing house. Secure Socket Layers or SSL, and XML are discussed and elaborated on specifically how intelligent agents play such a pivotal role in ERP e-commerce systems for credit card processing.展开更多
In this paper, we conduct research on the E-commerce consumer behavior based on the intelligent recommendation system andmachine learning. Closely associated with consumer network information search of a problem is th...In this paper, we conduct research on the E-commerce consumer behavior based on the intelligent recommendation system andmachine learning. Closely associated with consumer network information search of a problem is that the consumer’s information demand ascan be thought of consumer’s information demand is leading to trigger the power of consumer network information search behavior, whenconsumer is willing to buy goods, in a certain task under the infl uence of factors, environmental factors, individual factors, consumers and thetask object interaction to form the demand of consumer cognition. Under this basis, this paper proposes the new idea on the related issues thatwill solve the related challenges.展开更多
Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as...Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.展开更多
The paper shows how to design and implement an inte ll igent e-commerce system for medium or small enterprises. The corporate intranet is connected with Internet, which constitutes the hardware of the system. The s ys...The paper shows how to design and implement an inte ll igent e-commerce system for medium or small enterprises. The corporate intranet is connected with Internet, which constitutes the hardware of the system. The s ystem adopts modern voice-identification technology for user authentication to enable secure access to key databases and thus enhance the security of system da tabases. The software system consists of four modules: 1. Corporate website and advertisement information system, intending for updatin g online advertisement, collecting and analyzing market research information. 2. Employee technology training and assessment system, including a variety of co urses containing technology, technique and management and so on. Login the training system, employees are able to study courses of technology or technique or others. The training system adopts modern multimedia E-Learning te chnology and in fact it is an innovative education method, which includes self- study, tutorship and lecture. It is able to help employees enjoy their learning. Employees can take simulative exams, and managers can test employees onlin e periodically. 3. Corporate decision-making management system, calculating and analyzing the o peration, predicting future development, facilitating communication between mana gers and employees. It provides valuable foundation for decisions, which enables managers to make strategic decisions and scientific management. 4. E-commerce online transaction system, which facilitates material purchase an d product sale. By using intelligent e-commerce system, corporations will enhance the employee’ s skills and management level, reduce production cost, promote product sale , and thus strengthen corporation’s market competitiveness effectively.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally ...AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients.展开更多
AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHOD...AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term.展开更多
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Mac...With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Machine Learning(ML)-based intelligentmodelling has become a newparadigm for solving problems in the industrial domain[1–3].With numerous applications and diverse data types in the industrial domain,algorithmic and data-driven ML techniques can intelligently learn potential correlations between complex data and make efficient decisions while reducing human intervention.However,in real-world application scenarios,existing algorithms may have a variety of limitations,such as small data volumes,small detection targets,low efficiency,and algorithmic gaps in specific application domains[4].Therefore,many new algorithms and strategies have been proposed to address the challenges in industrial applications[5–8].展开更多
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf...Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.展开更多
Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which...Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.展开更多
The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epi...The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters.展开更多
Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)...Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.展开更多
This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the c...This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”.展开更多
Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based cont...Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions,thus declining the car-following performance.To solve this problem,a car-following strategy of ICV using EDO adjusted by reinforcement learning is proposed.Different from the conventional method,the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy.Since the“equivalent disturbance”can be compensated by EDO to a great extent,the disturbance rejection ability of the carfollowing method will be improved significantly.Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.展开更多
The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of...The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of IRS elements according to the channel conditions.However,the problem of obtaining an appropriate phase value of IRs is difficult to solve due to the non-convex problem.This paper proposes an iterative algorithm for the alternating optimal solution in the Single User Multiple-Input-Multiple-Output(SU-MIMO)systems.The proposed iterative algorithm finds an alternating optimal solution that is the phase value of IRS one by one.The results show that the proposed method has better performance than that of the randomized IRS systems.The number of iterations for maximizing the performance of the proposed algorithm depends on the channel state between the IRS and the receiver.展开更多
How to mine valuable information from massive multisource heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the longterm dependence of air target intention...How to mine valuable information from massive multisource heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the longterm dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing,target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition,and is of significance to the commanders’ operational command and situation prediction.展开更多
AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the light...AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the lightweight MobileNetV2 model structure to construct a tri-classification model.The study used 1220 images of three types of anterior ocular segments of the pterygium provided by the Eye Hospital of Nanjing Medical University.Conventional classification models—VGG16,ResNet50,MobileNetV2,and EfficientNetB7—were trained on the same dataset for comparison.To evaluate model performance in terms of accuracy,Kappa value,test time,sensitivity,specificity,the area under curve(AUC),and visual heat map,470 test images of the anterior segment of the pterygium were used.RESULTS:The accuracy of the MobileNetV2+Self-Attention model with 281 MB in model size was 92.77%,and the Kappa value of the model was 88.92%.The testing time using the model was 9ms/image in the server and 138ms/image in the local computer.The sensitivity,specificity,and AUC for the diagnosis of pterygium using normal anterior segment images were 99.47%,100%,and 100%,respectively;using anterior segment images in the observation period were 88.30%,95.32%,and 96.70%,respectively;and using the anterior segment images in the surgery period were 88.18%,94.44%,and 97.30%,respectively.CONCLUSION:The developed model is lightweight and can be used not only for detection but also for assessing the severity of pterygium.展开更多
文摘Agents are the new defacto standard for inclusion in modules of today’s software systems such as ERP systems, mobile applications and operating systems. Agents are an integral part of today’s software design. The question is how do intelligent agents work in the specific area of ERP credit card processing e-commerce models? To answer this question, a specific area of ERP systems will be analyzed: credit card processing for merchants. One specific merchant credit card processor will be specifically investigated: EVO Merchants. This paper will research how exactly does ERP systems interact using Application Programing Interface or “API” specified by a credit card clearing house. Secure Socket Layers or SSL, and XML are discussed and elaborated on specifically how intelligent agents play such a pivotal role in ERP e-commerce systems for credit card processing.
文摘In this paper, we conduct research on the E-commerce consumer behavior based on the intelligent recommendation system andmachine learning. Closely associated with consumer network information search of a problem is that the consumer’s information demand ascan be thought of consumer’s information demand is leading to trigger the power of consumer network information search behavior, whenconsumer is willing to buy goods, in a certain task under the infl uence of factors, environmental factors, individual factors, consumers and thetask object interaction to form the demand of consumer cognition. Under this basis, this paper proposes the new idea on the related issues thatwill solve the related challenges.
文摘Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.
文摘The paper shows how to design and implement an inte ll igent e-commerce system for medium or small enterprises. The corporate intranet is connected with Internet, which constitutes the hardware of the system. The s ystem adopts modern voice-identification technology for user authentication to enable secure access to key databases and thus enhance the security of system da tabases. The software system consists of four modules: 1. Corporate website and advertisement information system, intending for updatin g online advertisement, collecting and analyzing market research information. 2. Employee technology training and assessment system, including a variety of co urses containing technology, technique and management and so on. Login the training system, employees are able to study courses of technology or technique or others. The training system adopts modern multimedia E-Learning te chnology and in fact it is an innovative education method, which includes self- study, tutorship and lecture. It is able to help employees enjoy their learning. Employees can take simulative exams, and managers can test employees onlin e periodically. 3. Corporate decision-making management system, calculating and analyzing the o peration, predicting future development, facilitating communication between mana gers and employees. It provides valuable foundation for decisions, which enables managers to make strategic decisions and scientific management. 4. E-commerce online transaction system, which facilitates material purchase an d product sale. By using intelligent e-commerce system, corporations will enhance the employee’ s skills and management level, reduce production cost, promote product sale , and thus strengthen corporation’s market competitiveness effectively.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金Supported by Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(No.SZGSP014)Sanming Project of Medicine in Shenzhen(No.SZSM202011015)Shenzhen Science and Technology Planning Project(No.KCXFZ20211020163813019).
文摘AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients.
文摘AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term.
基金supported in part by the Beijing Natural Science Foundation under Grants L211020 and M21032in part by the National Natural Science Foundation of China under Grants U1836106,62271045,and U2133218.
文摘With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Machine Learning(ML)-based intelligentmodelling has become a newparadigm for solving problems in the industrial domain[1–3].With numerous applications and diverse data types in the industrial domain,algorithmic and data-driven ML techniques can intelligently learn potential correlations between complex data and make efficient decisions while reducing human intervention.However,in real-world application scenarios,existing algorithms may have a variety of limitations,such as small data volumes,small detection targets,low efficiency,and algorithmic gaps in specific application domains[4].Therefore,many new algorithms and strategies have been proposed to address the challenges in industrial applications[5–8].
基金National Key R&D Program of China,Grant/Award Number:2022YFC3303600National Natural Science Foundation of China,Grant/Award Number:62077015Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F020010。
文摘Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.
基金funded by the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L212002)the Tsinghua-Toyota Joint Research Fund(20223930096)the Guangdong Provincial Key Area Research and Development Program(2022B0909070001).
文摘Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.
基金Key discipline construction project for traditional Chinese Medicine in Guangdong province,Grant/Award Number:20220104The construction project of inheritance studio of national famous and old traditional Chinese Medicine experts,Grant/Award Number:140000020132。
文摘The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters.
基金supported by the Leading Talent Support Program for Agricultural Talents of the Chinese Academy of Agricultural Sciences(TCS2022020)the General program of National Natural Science Foundation of China(1573263)。
文摘Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.
文摘This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”.
基金State Key Laboratory of Automotive Safety and Energy,Grant/Award Number:KFY2208National Natural Science Foundation of China,Grant/Award Numbers:U2013601,U20A20225+1 种基金Key Research and Development Plan of Anhui Province,Grant/Award Number:202004a05020058the Natural Science Foundation of Hefei,China(Grant No.2021032)。
文摘Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions,thus declining the car-following performance.To solve this problem,a car-following strategy of ICV using EDO adjusted by reinforcement learning is proposed.Different from the conventional method,the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy.Since the“equivalent disturbance”can be compensated by EDO to a great extent,the disturbance rejection ability of the carfollowing method will be improved significantly.Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2022-2018-0-01423)supervised by the ITP(Institute for Information&Communications Technology Planning&Evaluation)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540).
文摘The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of IRS elements according to the channel conditions.However,the problem of obtaining an appropriate phase value of IRs is difficult to solve due to the non-convex problem.This paper proposes an iterative algorithm for the alternating optimal solution in the Single User Multiple-Input-Multiple-Output(SU-MIMO)systems.The proposed iterative algorithm finds an alternating optimal solution that is the phase value of IRS one by one.The results show that the proposed method has better performance than that of the randomized IRS systems.The number of iterations for maximizing the performance of the proposed algorithm depends on the channel state between the IRS and the receiver.
基金supported by the National Natural Science Foundation of China (61502523)。
文摘How to mine valuable information from massive multisource heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the longterm dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing,target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition,and is of significance to the commanders’ operational command and situation prediction.
基金Supported by the National Natural Science Foundation of China(No.61906066)Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202147191)+2 种基金Huzhou University Graduate Research Innovation Project(No.2020KYCX21)Sanming Project of Medicine in Shenzhen(SZSM202311012)Shenzhen Science and Technology Program(No.JCYJ20220530153604010).
文摘AIM:To evaluate the application of an intelligent diagnostic model for pterygium.METHODS:For intelligent diagnosis of pterygium,the attention mechanisms—SENet,ECANet,CBAM,and Self-Attention—were fused with the lightweight MobileNetV2 model structure to construct a tri-classification model.The study used 1220 images of three types of anterior ocular segments of the pterygium provided by the Eye Hospital of Nanjing Medical University.Conventional classification models—VGG16,ResNet50,MobileNetV2,and EfficientNetB7—were trained on the same dataset for comparison.To evaluate model performance in terms of accuracy,Kappa value,test time,sensitivity,specificity,the area under curve(AUC),and visual heat map,470 test images of the anterior segment of the pterygium were used.RESULTS:The accuracy of the MobileNetV2+Self-Attention model with 281 MB in model size was 92.77%,and the Kappa value of the model was 88.92%.The testing time using the model was 9ms/image in the server and 138ms/image in the local computer.The sensitivity,specificity,and AUC for the diagnosis of pterygium using normal anterior segment images were 99.47%,100%,and 100%,respectively;using anterior segment images in the observation period were 88.30%,95.32%,and 96.70%,respectively;and using the anterior segment images in the surgery period were 88.18%,94.44%,and 97.30%,respectively.CONCLUSION:The developed model is lightweight and can be used not only for detection but also for assessing the severity of pterygium.