期刊文献+
共找到4,824篇文章
< 1 2 242 >
每页显示 20 50 100
An intelligent active probing and trace-back scheme for IoT anomaly detection
1
作者 Luying Wang Lingyi Chen +3 位作者 Neal N.Xiong Anfeng Liu Tian Wang Mianxiong Dong 《Digital Communications and Networks》 SCIE CSCD 2024年第1期168-181,共14页
Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and ... Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%. 展开更多
关键词 Anomaly detection Internet of things Integrating data collection Mobile edge users intelligent
下载PDF
Intelligent Metal Detection and Disposal Automation Equipment Based on Geometric Optimization Driving Algorithm
2
作者 TIAN Xuehui LI Chengzu +3 位作者 WEI Kehan QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第5期492-504,共13页
In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of el... In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent. 展开更多
关键词 intelligent manufacturing electromagnetic induction metal detection geometric optimization driving algorithm automation equipment
下载PDF
Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN
3
作者 Yufan Gao Fei Yin +5 位作者 Chen Hong Xiangfu Chen Hang Deng Yongjian Liu Zhenyu Li Qing Yao 《Journal of Integrative Agriculture》 2025年第1期220-234,共15页
Cruciferous vegetables are important edible vegetable crops.However,they are susceptible to various pests during their growth process,which requires real-time and accurate monitoring of these pests for pest forecastin... Cruciferous vegetables are important edible vegetable crops.However,they are susceptible to various pests during their growth process,which requires real-time and accurate monitoring of these pests for pest forecasting and scientific control.Hanging yellow sticky boards is a common way to monitor and trap those pests which are attracted to the yellow color.To achieve real-time,low-cost,intelligent monitoring of these vegetable pests on the boards,we established an intelligent monitoring system consisting of a smart camera,a web platform and a pest detection algorithm deployed on a server.After the operator sets the monitoring preset points and shooting time of the camera on the system platform,the camera in the field can automatically collect images of multiple yellow sticky boards at fixed places and times every day.The pests trapped on the yellow sticky boards in vegetable fields,Plutella xylostella,Phyllotreta striolata and flies,are very small and susceptible to deterioration and breakage,which increases the difficulty of model detection.To solve the problem of poor recognition due to the small size and breaking of the pest bodies,we propose an intelligent pest detection algorithm based on an improved Cascade R-CNN model for three important cruciferous crop pests.The algorithm uses an overlapping sliding window method,an improved Res2Net network as the backbone network,and a recursive feature pyramid network as the neck network.The results of field tests show that the algorithm achieves good detection results for the three target pests on the yellow sticky board images,with precision levels of 96.5,92.2 and 75.0%,and recall levels of 96.6,93.1 and 74.7%,respectively,and an F_(1) value of 0.880.Compared with other algorithms,our algorithm has a significant advantage in its ability to detect small target pests.To accurately obtain the data for the newly added pests each day,a two-stage pest matching algorithm was proposed.The algorithm performed well and achieved results that were highly consistent with manual counting,with a mean error of only 2.2%.This intelligent monitoring system realizes precision,good visualization,and intelligent vegetable pest monitoring,which is of great significance as it provides an effective pest prevention and control option for farmers. 展开更多
关键词 vegetable pests yellow sticky boards intelligent monitoring system deep learning pest detection
下载PDF
Traffic light detection and recognition in intersections based on intelligent vehicle
4
作者 张宁 何铁军 +1 位作者 高朝晖 黄卫 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期517-521,共5页
To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transfo... To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges. 展开更多
关键词 intelligent vehicle stabling siding detection traffic lights detection self-associative memory light-emitting diode (LED) characters recognition
下载PDF
Intelligent Intrusion Detection System Model Using Rough Neural Network 被引量:4
5
作者 Yan, Huai-Zhi Hu, Chang-Zhen Tan, Hui-Min 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第1期119-122,共4页
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma... A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management. 展开更多
关键词 network security neural network intelligent intrusion detection rough set
下载PDF
Damage Detection of Composite Material Intelligent Structure with a New Photoelectric System 被引量:3
6
作者 俞晓磊 赵志敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第2期80-82,共3页
A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent st... A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent structure and it also can tell us the damage position in the structure. This system consists of two parts : software and hardware. Experiments of the damage detection and the analysis of the composite material structure with the photoelectric system were performed, and a series of damage detection experiments was conducted. The results prove that the performance of the system is well and the effects of the measure and test are evident. Through all the experiments, the damage detection technology and test system are approved to be real-time, effective and reliable in the damage detection of the composite intelligent structure. 展开更多
关键词 composite materials intelligent structure damage detection photoelectric system
下载PDF
Intelligent Ammunition Detection and Classification System Using Convolutional Neural Network 被引量:6
7
作者 Gulzar Ahmad Saad Alanazi +4 位作者 Madallah Alruwaili Fahad Ahmad Muhammad Adnan Khan Sagheer Abbas Nadia Tabassum 《Computers, Materials & Continua》 SCIE EI 2021年第5期2585-2600,共16页
Security is a significant issue for everyone due to new and creative ways to commit cybercrime.The Closed-Circuit Television(CCTV)systems are being installed in offices,houses,shopping malls,and on streets to protect ... Security is a significant issue for everyone due to new and creative ways to commit cybercrime.The Closed-Circuit Television(CCTV)systems are being installed in offices,houses,shopping malls,and on streets to protect lives.Operators monitor CCTV;however,it is difficult for a single person to monitor the actions of multiple people at one time.Consequently,there is a dire need for an automated monitoring system that detects a person with ammunition or any other harmful material Based on our research and findings of this study,we have designed a new Intelligent Ammunition Detection and Classification(IADC)system using Convolutional Neural Network(CNN).The proposed system is designed to identify persons carrying weapons and ammunition using CCTV cameras.When weapons are identified,the cameras sound an alarm.In the proposed IADC system,CNN was used to detect firearms and ammunition.The CNN model which is a Deep Learning technique consists of neural networks,most commonly applied to analyzing visual imagery has gained popularity for unstructured(images,videos)data classification.Additionally,this system generates an early warning through detection of ammunition before conditions become critical.Hence the faster and earlier the prediction,the lower the response time,loses and potential victims.The proposed IADC system provides better results than earlier published models like VGGNet,OverFeat-1,OverFeat-2,and OverFeat-3. 展开更多
关键词 CCTV CNN IADC deep learning intelligent ammunition detection DnCNN
下载PDF
Intelligent Detection Model Based on a Fully Convolutional Neural Network for Pavement Cracks 被引量:2
8
作者 Duo Ma Hongyuan Fang +3 位作者 Binghan Xue Fuming Wang Mohammed AMsekh Chiu Ling Chan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1267-1291,共25页
The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to est... The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to establish an efficient intelligent identification model for pavement cracks.The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix.It has been widely used in geotechnical engineering,computer vision,medicine,and other fields.However,there are three major problems in the application of neural networks to crack identification.There are too few layers,extracted crack features are not complete,and the method lacks the efficiency to calculate the whole picture.In this study,a fully convolutional neural network based on ResNet-101 is used to establish an intelligent identification model of pavement crack regions.This method,using a convolutional layer instead of a fully connected layer,realizes full convolution and accelerates calculation.The region proposals come from the feature map at the end of the base network,which avoids multiple computations of the same picture.Online hard example mining and data-augmentation techniques are adopted to improve the model’s recognition accuracy.We trained and tested Concrete Crack Images for Classification(CCIC),which is a public dataset collected using smartphones,and the Crack Image Database(CIDB),which was automatically collected using vehicle-mounted charge-coupled device cameras,with identification accuracy reaching 91.4%and 86.4%,respectively.The proposed model has a higher recognition accuracy and recall rate than Faster RCNN and different depth models,and can extract more complete and accurate crack features in CIDB.We also analyzed translation processing,fuzzy,scaling,and distorted images.The proposed model shows a strong robustness and stability,and can automatically identify image cracks of different forms.It has broad application prospects in practical engineering problems. 展开更多
关键词 Fully convolutional neural network pavement crack intelligent detection crack image database
下载PDF
Extension Modeling Strategy of Intelligent Detection in D.huoshanense Photosynthesis Process 被引量:4
9
作者 Rongde Lu Can Qin Yunsheng Bao 《Intelligent Control and Automation》 2011年第2期126-132,共7页
Aiming at the limitations of the existing knowledge representations in intelligent detection, a new method of Extension-based Knowledge Representation (EKR) was proposed. The definitions, grammar rules, and storage st... Aiming at the limitations of the existing knowledge representations in intelligent detection, a new method of Extension-based Knowledge Representation (EKR) was proposed. The definitions, grammar rules, and storage structure of EKR were presented. An Extension Solving Model (ESM) based on EKR was discussed in detail, including creation of the extension constraint graph, extended inference, calculation of relevant functions and generation of extension set. A knowledge base system based on EKR and ESM was developed, which was applied in extension repository system intelligent design of detection in photosynthesis process of D.huoshanense. More reasonable results were obtained than traditional rule-based system. EKR was feasible in intelligent design to solve the problem of intelligent detection knowledge representations. 展开更多
关键词 Extension-Based KNOWLEDGE Representation (EKR) intelligent detection EXTENSION Modeling STRATEGY (EMS) PHOTOSYNTHESIS Process of D.huoshanense (PPDH)
下载PDF
Investigation of MAS structure and intelligent^(+) information processing mechanism of hypersonic target detection and recognition system 被引量:2
10
作者 WU Xia LI Yan +4 位作者 SUN Yongjian CHEN Alei CHEN Jianwen MA Jianchao CHEN Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1105-1115,共11页
The hypersonic target detection and recognition system is studied,on the basis of overall planning and design,a multi-agent system(MAS)structure and intelligent+information processing mechanism based on target detecti... The hypersonic target detection and recognition system is studied,on the basis of overall planning and design,a multi-agent system(MAS)structure and intelligent+information processing mechanism based on target detection and recognition are proposed,and the multi-agent operation process is analyzed and designed in detail.In the specific agents construction,the information fusion technology is introduced to defining the embedded agents and their interrelations in the system structure,and the intelligent processing ability of complex and uncertain problems is emphatically analyzed from the aspects of autonomy and collaboration.The aim is to optimize the information processing strategy of the hypersonic target detection and recognition system and improve the robustness and rapidity of the system. 展开更多
关键词 hypersonic target detection recognition intelligent information fusion multi-agent system(MAS)
下载PDF
AN INTELLIGENT METHOD FOR REAL-TIME DETECTION OF DDOS ATTACK BASED ON FUZZY LOGIC 被引量:2
11
作者 Wang Jiangtao Yang Geng 《Journal of Electronics(China)》 2008年第4期511-518,共8页
The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that c... The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time. 展开更多
关键词 Abnormal traffic Distribute Denial of Service (DDoS) Real-time detection intelligent control Fuzzy logic
下载PDF
Intelligent DoS Attack Detection with Congestion Control Technique for VANETs 被引量:1
12
作者 R.Gopi Mahantesh Mathapati +4 位作者 B.Prasad Sultan Ahmad Fahd N.Al-Wesabi Manal Abdullah Alohali Anwer Mustafa Hilal 《Computers, Materials & Continua》 SCIE EI 2022年第7期141-156,共16页
VehicularAd hoc Network(VANET)has become an integral part of Intelligent Transportation Systems(ITS)in today’s life.VANET is a network that can be heavily scaled up with a number of vehicles and road side units that ... VehicularAd hoc Network(VANET)has become an integral part of Intelligent Transportation Systems(ITS)in today’s life.VANET is a network that can be heavily scaled up with a number of vehicles and road side units that keep fluctuating in real world.VANET is susceptible to security issues,particularly DoS attacks,owing to maximum unpredictability in location.So,effective identification and the classification of attacks have become the major requirements for secure data transmission in VANET.At the same time,congestion control is also one of the key research problems in VANET which aims at minimizing the time expended on roads and calculating travel time as well as waiting time at intersections,for a traveler.With this motivation,the current research paper presents an intelligent DoS attack detection with Congestion Control(IDoS-CC)technique for VANET.The presented IDoSCC technique involves two-stage processes namely,Teaching and Learning Based Optimization(TLBO)-based Congestion Control(TLBO-CC)and Gated Recurrent Unit(GRU)-based DoS detection(GRU-DoSD).The goal of IDoS-CC technique is to reduce the level of congestion and detect the attacks that exist in the network.TLBO algorithm is also involved in IDoS-CC technique for optimization of the routes taken by vehicles via traffic signals and to minimize the congestion on a particular route instantaneously so as to assure minimal fuel utilization.TLBO is applied to avoid congestion on roadways.Besides,GRU-DoSD model is employed as a classification model to effectively discriminate the compromised and genuine vehicles in the network.The outcomes from a series of simulation analyses highlight the supremacy of the proposed IDoS-CC technique as it reduced the congestion and successfully identified the DoS attacks in network. 展开更多
关键词 VANET intelligent transportation systems congestion control attack detection dos attack deep learning
下载PDF
Intelligent detection method for workpiece defect based on industrial CT image 被引量:1
13
作者 ZHANG Rui-ping SHI Jia-yue +2 位作者 GOU Jun-nian DONG Hai-ying AN Mei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期299-306,共8页
In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice ima... In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry. 展开更多
关键词 industrial computed tomography (CT) defect detection image segmentation feature extraction intelligent identification
下载PDF
Intelligent Intrusion Detection System for Industrial Internet of Things Environment 被引量:1
14
作者 R.Gopi R.Sheeba +4 位作者 K.Anguraj T.Chelladurai Haya Mesfer Alshahrani Nadhem Nemri Tarek Lamoudan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1567-1582,共16页
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar... Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques. 展开更多
关键词 Intrusion detection system artificial intelligence machine learning industry 4.0 internet of things
下载PDF
Improving the Segmentation of Arabic Handwriting Using Ligature Detection Technique 被引量:1
15
作者 Husam Ahmad Al Hamad Mohammad Shehab 《Computers, Materials & Continua》 SCIE EI 2024年第5期2015-2034,共20页
Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthr... Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset. 展开更多
关键词 Arabic handwritten SEGMENTATION image processing ligature detection technique intelligent recognition
下载PDF
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
16
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 Artificial intelligence Deep learning Capsule endoscopy Image classification Object detection Bleeding risk
下载PDF
Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence 被引量:1
17
作者 Ali Hamid Farea Omar H.Alhazmi Kerem Kucuk 《Computers, Materials & Continua》 SCIE EI 2024年第2期1525-1545,共21页
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),... While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features. 展开更多
关键词 Internet of Things SECURITY anomaly detection and prevention system artificial intelligence optimization techniques
下载PDF
Intelligent Spectrum Detection Model Based on Compressed Sensing in Cognitive Radio Network
18
作者 Yanli Ji Weidong Wang Yinghai Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期691-701,共11页
In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper propose... In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper proposes a joint random detection strategy using the idle cognitive users in cognitive wireless networks.After adding idle cognitive users for detection,the compressed sensing model is employed to describe the number of available channels obtained by the cognitive base station to derive the detection performance of the cognitive network at this time.Both theoretical analysis and simulation results show that using idle cognitive users can reduce service delay and improve the throughput of cognitive networks.After considering the time occupied by cognitive users to report detection information,the optimal participation number of idle cognitive users in joint detection is obtained through the optimization algorithm. 展开更多
关键词 Cognitive wireless network compressed sensing intelligent frequency spectrum detection random detection.
下载PDF
Research on the Anomaly Detection Method in Intelligent Patrol Based on Big Data Analysis
19
作者 Xiaoqing Deng 《Journal of Computer and Communications》 2019年第8期1-7,共7页
The network anomaly detection in intelligent patrol is based on the trigger of a single threshold of network element performance parameters in patrol task, which has a high false alarm rate and low efficiency. In orde... The network anomaly detection in intelligent patrol is based on the trigger of a single threshold of network element performance parameters in patrol task, which has a high false alarm rate and low efficiency. In order to effectively and accurately integrate network performance, this paper proposes to mine network element performance data and network element log information in the integrated automatic patrol to detect network anomalies. Because log files have a large amount of data and a variety of types, and log data has a complex structure and contains large implied information. The relationship between network anomalies and time can actively discover through the analysis of the log files. Therefore, big data mining and classification can greatly improve the efficiency of data processing. However, the accuracy of finding network anomalies is insufficient only for log analysis. Therefore, this paper puts forward the performance indexes collected in the log analysis and patrol inspection system and adopts the sequence analysis algorithm to detect network anomalies, so as to improve the accuracy and efficiency of detection. 展开更多
关键词 BIG DATA intelligent PATROL ANOMALY detection
下载PDF
Traffic Sign Detection with Low Complexity for Intelligent Vehicles Based on Hybrid Features
20
作者 Sara Khalid Jamal Hussain Shah +2 位作者 Muhammad Sharif Muhammad Rafiq Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2023年第7期861-879,共19页
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea... Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work. 展开更多
关键词 Traffic sign detection intelligent systems COMPLEXITY VEHICLES color moments texture features
下载PDF
上一页 1 2 242 下一页 到第
使用帮助 返回顶部