As a distributed machine learning architecture,Federated Learning(FL)can train a global model by exchanging users’model parameters without their local data.However,with the evolution of eavesdropping techniques,attac...As a distributed machine learning architecture,Federated Learning(FL)can train a global model by exchanging users’model parameters without their local data.However,with the evolution of eavesdropping techniques,attackers can infer information related to users’local data with the intercepted model parameters,resulting in privacy leakage and hindering the application of FL in smart factories.To meet the privacy protection needs of the intelligent inspection task in pumped storage power stations,in this paper we propose a novel privacy-preserving FL algorithm based on multi-key Fully Homomorphic Encryption(FHE),called MFHE-PPFL.Specifically,to reduce communication costs caused by deploying the FHE algorithm,we propose a self-adaptive threshold-based model parameter compression(SATMPC)method.It can reduce the amount of encrypted data with an adaptive thresholds-enabled user selection mechanism that only enables eligible devices to communicate with the FL server.Moreover,to protect model parameter privacy during transmission,we develop a secret sharing-based multi-key RNS-CKKS(SSMR)method that encrypts the device’s uploaded parameter increments and supports decryption in device dropout scenarios.Security analyses and simulation results show that our algorithm can prevent four typical threat models and outperforms the state-of-the-art in communication costs with guaranteed accuracy.展开更多
A design for low power consumption inspection instrument, in which the ATMega32L is used as the control core, is presented. The reader with wireless identification based on RF technology is researched and the low-cost...A design for low power consumption inspection instrument, in which the ATMega32L is used as the control core, is presented. The reader with wireless identification based on RF technology is researched and the low-cost power is studied particularly. This instrument can be used in industry fields to measure temperature, humidity, gas concentration and other specifications, so it has wide applications and is worth to be extended.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62171113。
文摘As a distributed machine learning architecture,Federated Learning(FL)can train a global model by exchanging users’model parameters without their local data.However,with the evolution of eavesdropping techniques,attackers can infer information related to users’local data with the intercepted model parameters,resulting in privacy leakage and hindering the application of FL in smart factories.To meet the privacy protection needs of the intelligent inspection task in pumped storage power stations,in this paper we propose a novel privacy-preserving FL algorithm based on multi-key Fully Homomorphic Encryption(FHE),called MFHE-PPFL.Specifically,to reduce communication costs caused by deploying the FHE algorithm,we propose a self-adaptive threshold-based model parameter compression(SATMPC)method.It can reduce the amount of encrypted data with an adaptive thresholds-enabled user selection mechanism that only enables eligible devices to communicate with the FL server.Moreover,to protect model parameter privacy during transmission,we develop a secret sharing-based multi-key RNS-CKKS(SSMR)method that encrypts the device’s uploaded parameter increments and supports decryption in device dropout scenarios.Security analyses and simulation results show that our algorithm can prevent four typical threat models and outperforms the state-of-the-art in communication costs with guaranteed accuracy.
基金National Natural Science Foundation of Tianjin(08JCYBJC14700)
文摘A design for low power consumption inspection instrument, in which the ATMega32L is used as the control core, is presented. The reader with wireless identification based on RF technology is researched and the low-cost power is studied particularly. This instrument can be used in industry fields to measure temperature, humidity, gas concentration and other specifications, so it has wide applications and is worth to be extended.