Our next generation of industry-lndustry 4.0-holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope wit...Our next generation of industry-lndustry 4.0-holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)- enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the loT, cyber-physical systems (CPSs), cloud computing, big data analytics (BDA), and information and communications technology (ICT) that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.展开更多
Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the pro...Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the process industry,namely,deep integration of industrial artificial intelligence and the Industrial Internet with the process industry,is proposed.This paper analyzes the development status of the existing three-tier structure of the process industry,which consists of the enterprise resource planning,the manufacturing execution system,and the process control system,and examines the decision-making,control,and operation management adopted by process enterprises.Based on this analysis,it then describes the meaning of an intelligent manufacturing framework and presents a vision of an intelligent optimal decision-making system based on human–machine cooperation and an intelligent autonomous control system.Finally,this paper analyzes the scientific challenges and key technologies that are crucial for the successful deployment of intelligent manufacturing in the process industry.展开更多
Intelligent manufacturing is the transformation and upgrading of Chma's manutactunng industry, to speeu up me transformation from the manufacturing power to the main direction of manufacturing power, but also to impl...Intelligent manufacturing is the transformation and upgrading of Chma's manutactunng industry, to speeu up me transformation from the manufacturing power to the main direction of manufacturing power, but also to implement the "Made in China 2025" and "lntemet plus" strategy to promote the supply side of the manufacturing sector reform, building a global influence of the importatu center of science and technology innovation center. An analysis of the present situation of intelligent manufacturing industry in Shanghai, we can point out the deficiency of its development and point out the direction for the development of the intelligent manufacturing industry in Shanghai.展开更多
The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance indus...The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.展开更多
With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivo...With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components.展开更多
Smart manufacturing is critical in improving the quality of the process industry. In smart manufacturing, there is a trend to incorporate different kinds of new-generation information technologies into process- safety...Smart manufacturing is critical in improving the quality of the process industry. In smart manufacturing, there is a trend to incorporate different kinds of new-generation information technologies into process- safety analysis. At present, green manufacturing is facing major obstacles related to safety management, due to the usage of large amounts of hazardous chemicals, resulting in spatial inhomogeneity of chemical industrial processes and increasingly stringent safety and environmental regulations. Emerging informa- tion technologies such as arti cial intelligence (AI) are quite promising as a means of overcoming these dif culties. Based on state-of-the-art AI methods and the complex safety relations in the process industry, we identify and discuss several technical challenges associated with process safety: ① knowledge acquisition with scarce labels for process safety;② knowledge-based reasoning for process safety;③ accurate fusion of heterogeneous data from various sources;and ④ effective learning for dynamic risk assessment and aided decision-making. Current and future works are also discussed in this context.展开更多
Along with the development oflntemet plus and information technology, the future industrial pattern will appear new change. The Internet represents a new economic model, and it uses the results of the development of t...Along with the development oflntemet plus and information technology, the future industrial pattern will appear new change. The Internet represents a new economic model, and it uses the results of the development of the developed communication technology and the Internet platform with the existing various areas of known and unknown fields of social and economic to integration depth, giving full play to the advantages of integration, enhancing the innovation ability of the economic and the production adaptability, to create more new opportunities, thus forming a sustainable excellent ecosystem.展开更多
The advancement of intelligent manufacturing in Dongguan puts forward new requirements for industrial talents,and the development of new productivity is bound to force enterprises and employees to make adaptive adjust...The advancement of intelligent manufacturing in Dongguan puts forward new requirements for industrial talents,and the development of new productivity is bound to force enterprises and employees to make adaptive adjustments.The upgrading of intelligent manufacturing is not only the upgrading of intelligent machines but also the upgrading of the human brain,which includes the reshaping and cultivation of industrial talents.Based on field research,this study analyzes the different characteristics of the traditional and the new intelligent manufacturing model,as well as summarizes the characteristics of industrial talents and the changing trend of talent demand in view of the intelligent manufacturing model in Dongguan.展开更多
With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry ...With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.展开更多
The application of intelligence to manufacturing has emerged as a compelling topic for researchers and industries around the world.However,different terminologies,namely smart manufacturing(SM)and intelligent manufact...The application of intelligence to manufacturing has emerged as a compelling topic for researchers and industries around the world.However,different terminologies,namely smart manufacturing(SM)and intelligent manufacturing(IM),have been applied to what may be broadly characterized as a similar paradigm by some researchers and practitioners.While SM and IM are similar,they are not identical.From an evolutionary perspective,there has been little consideration on whether the definition,thought,connotation,and technical development of the concepts of SM or IM are consistent in the literature.To address this gap,the work performs a qualitative and quantitative investigation of research literature to systematically compare inherent differences of SM and IM and clarify the relationship between SM and IM.A bibliometric analysis of publication sources,annual publication numbers,keyword frequency,and top regions of research and development establishes the scope and trends of the currently presented research.Critical topics discussed include origin,definitions,evolutionary path,and key technologies of SM and IM.The implementation architecture,standards,and national focus are also discussed.In this work,a basis to understand SM and IM is provided,which is increasingly important because the trend to merge both terminologies rises in Industry 4.0 as intelligence is being rapidly applied to modern manufacturing and human–cyber–physical systems.展开更多
Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks.The intelligent manuf...Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks.The intelligent manufacturing(IM)systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms.The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network,which mitigates the severity of industrial chain disruption.In this study,we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks.Considering the constraints of the IM resources,we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
Many articles have been published on intelligent manufacturing, most of which focus on hardware, soft-ware, additive manufacturing, robotics, the Internet of Things, and Industry 4.0. This paper provides a dif-ferent ...Many articles have been published on intelligent manufacturing, most of which focus on hardware, soft-ware, additive manufacturing, robotics, the Internet of Things, and Industry 4.0. This paper provides a dif-ferent perspective by examining relevant challenges and providing examples of some less-talked-about yet essential topics, such as hybrid systems, redefining advanced manufacturing, basic building blocks of new manufacturing, ecosystem readiness, and technology scalahility. The first major challenge is to (re-)define what the manufacturing of the future will he, if we wish to: ① raise public awareness of new manufacturing's economic and societal impacts, and ② garner the unequivocal support of policy- makers. The second major challenge is to recognize that manufacturing in the future will consist of sys-tems of hybrid systems of human and robotic operators; additive and suhtractive processes; metal and composite materials; and cyher and physical systems. Therefore, studying the interfaces between con- stituencies and standards becomes important and essential. The third challenge is to develop a common framework in which the technology, manufacturing business case, and ecosystem readiness can he eval- uated concurrently in order to shorten the time it takes for products to reach customers. Integral to this is having accepted measures of "scalahility" of non-information technologies. The last, hut not least, chal-lenge is to examine successful modalities of industry-academia-government collaborations through public-private partnerships. This article discusses these challenges in detail.展开更多
<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process...<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process of the virus imply to increase health security (patient and personal health). In this context, healthcare logistics flows require a new and safety organization improving the hospital performance. The purpose of this paper consists in optimizing healthcare logistics flows by solving problems associated to the internal logistics such as reduction of the personal health wasting time and the protection of both patients and personal health. Then, the methodology corresponds to the use of the hospital sustainable digital transformation as a response to healthcare flows and safety problems. Indeed, social, societal and environmental aspects have to be considered in addition to new technologies such as artificial intelligence (AI), Internet of Things (IoTs), Big data and analytics. These parameters could be used in the healthcare for increasing doctor, nurse, caregiver performance during their daily operations, and patient satisfaction. Indeed, this hospital digital transformation requires the use of large data associated to patients and personal health, algorithms, a performance measurement tool (actual and future state) and a general approach for transforming digitally the hospital flows. The paper findings show that the healthcare logistics performance could be improved with a sustainable digital transformation methodology and an intelligent software tool. This paper aims to develop this healthcare logistics 4.0 methodology and to elaborate the intelligent support system. After an introduction presenting the common hospital flows and their main problems, a literature review will be detailed for showing how existing concepts could contribute to the elaboration of a structured methodology. The structure of the intelligent software tool for the healthcare digital transformation and the tool development processes will be presented. An example will be given for illustrating the development of the tool.</span>展开更多
Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things(I...Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things(IIOT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management.Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart.We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.展开更多
The nonferrous metallurgical(NFM)industry is a cornerstone industry for a nation’s economy.With the development of artificial technologies and high requirements on environment protection,product quality,and productio...The nonferrous metallurgical(NFM)industry is a cornerstone industry for a nation’s economy.With the development of artificial technologies and high requirements on environment protection,product quality,and production efficiency,the importance of applying smart manufacturing technologies to comprehensively percept production states and intelligently optimize process operations is becoming widely recognized by the industry.As a brief summary of the smart and optimal manufacturing of the NFM industry,this paper first reviews the research progress on some key facets of the operational optimization of NFM processes,including production and management,blending optimization,modeling,process monitoring,optimization,and control.Then,it illustrates the perspectives of smart and optimal manufacturing of the NFM industry.Finally,it discusses the major research directions and challenges of smart and optimal manufacturing for the NFM industry.This paper will lay a foundation for the realization of smart and optimal manufacturing in nonferrous metallurgy in the future.展开更多
Industry 4.0 concepts have brought about a wind of renewal in the organization of companies and their production methods. However, this integration is subject to obstacles when it comes to Small and Medium sized Enter...Industry 4.0 concepts have brought about a wind of renewal in the organization of companies and their production methods. However, this integration is subject to obstacles when it comes to Small and Medium sized Enterprises—SMEs: the costs of new technologies to be acquired, the level of maturity of the company regarding its level of digitization and automation, human aspects such as training employees to master new technologies, reluctance to change, etc. This article provides a new framework and presents an intelligent support system to facilitate the digital transformation of SMEs. The digitalization is realized through physical, informational, and decisional points of view. To achieve the complete transformation of the company, the framework combines the triptych of performance criteria (cost, quality, time) with the notions of sustainability (with respect to social, societal, and environmental aspects) and digitization through tools to be integrated into the company’s processes. The new framework encompasses the formalisms developed in the literature on Industry 4.0 concepts, information systems and organizational methods as well as a global structure to support and assist operators in managing their operations. In the form of a web application, it will exploit reliable data obtained through information systems such as Enterprise Resources Planning—ERP, Manufacturing Execution System—MES, or Warehouse Management System—WMS and new technologies such as artificial intelligence (deep learning, multi-agent systems, expert systems), big data, Internet of things (IoT) that communicate with each other to assist operators during production processes. To illustrate and validate the concepts and developed tools, use cases of an electronic manufacturing SME have been solved with these concepts and tools, in order to succeed in this company’s digital transformation. Thus, a reference model of the electronics manufacturing companies is being developed for facilitating the future digital transformation of these domain companies. The realization of these use cases and the new reference model are growing up and their future exploitation will be presented as soon as possible.展开更多
Digital twin (DT) is drawing significant attention both from the academia, industry and government. However, people from different fields have different understandings and cognitions about DT. In addition, most of the...Digital twin (DT) is drawing significant attention both from the academia, industry and government. However, people from different fields have different understandings and cognitions about DT. In addition, most of the DT application scenarios discussed belong to discrete manufacturing and are not suitable for process manufacturing. Petrochemical industry is a typical process manufacturing with multi-scale hierarchical and functional structure in space and time. This contribution focuses on topics on the application of DT in petrochemical industry including: 1) The specific DT definition by process industry. 2) The three key elements and design of chemical DT. 3) Features and application scenarios of chemical DT from the view of model precision, model scale and asset life cycle. 4) The Four P’s maturity framework of chemical DT, and 5) Prospects for the development of chemical DT.展开更多
The article deals with possible approaches to the development trends in the industrial engineering in manufacturing organizations. The authors emphasize the need for integration of advanced industrial engineering in t...The article deals with possible approaches to the development trends in the industrial engineering in manufacturing organizations. The authors emphasize the need for integration of advanced industrial engineering in the next generation of manufacturing systems, which responds to new trends of production, innovation and advanced technology. This integration represents a sustainable development, so that humanization of work are increased, more effective use of natural and energy resources are achieved and production costs are reduced. Trends in the products manufacturing must meet both industrial engineering as well as production management. The development trends in the industrial engineering in manufacturing organizations must use methods and tools of advanced industrial engineering to achieve competitiveness. The second part of this article deals with specification of these approaches in next generation of production systems.展开更多
文摘Our next generation of industry-lndustry 4.0-holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)- enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the loT, cyber-physical systems (CPSs), cloud computing, big data analytics (BDA), and information and communications technology (ICT) that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.
基金This research was supported by the National Natural Science Foundation of China(61991400,61991403,and 61991404)China Institute of Engineering Consulting Research Project(2019-ZD-12)the 2020 Science and Technology Major Project of Liaoning Province(2020JH1/10100008),China.
文摘Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the process industry,namely,deep integration of industrial artificial intelligence and the Industrial Internet with the process industry,is proposed.This paper analyzes the development status of the existing three-tier structure of the process industry,which consists of the enterprise resource planning,the manufacturing execution system,and the process control system,and examines the decision-making,control,and operation management adopted by process enterprises.Based on this analysis,it then describes the meaning of an intelligent manufacturing framework and presents a vision of an intelligent optimal decision-making system based on human–machine cooperation and an intelligent autonomous control system.Finally,this paper analyzes the scientific challenges and key technologies that are crucial for the successful deployment of intelligent manufacturing in the process industry.
文摘Intelligent manufacturing is the transformation and upgrading of Chma's manutactunng industry, to speeu up me transformation from the manufacturing power to the main direction of manufacturing power, but also to implement the "Made in China 2025" and "lntemet plus" strategy to promote the supply side of the manufacturing sector reform, building a global influence of the importatu center of science and technology innovation center. An analysis of the present situation of intelligent manufacturing industry in Shanghai, we can point out the deficiency of its development and point out the direction for the development of the intelligent manufacturing industry in Shanghai.
基金Under the auspices of the Natural Science Foundation Project of Heilongjiang Province(No.LH2019D009)。
文摘The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant Number:LH2021F002).
文摘With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components.
文摘Smart manufacturing is critical in improving the quality of the process industry. In smart manufacturing, there is a trend to incorporate different kinds of new-generation information technologies into process- safety analysis. At present, green manufacturing is facing major obstacles related to safety management, due to the usage of large amounts of hazardous chemicals, resulting in spatial inhomogeneity of chemical industrial processes and increasingly stringent safety and environmental regulations. Emerging informa- tion technologies such as arti cial intelligence (AI) are quite promising as a means of overcoming these dif culties. Based on state-of-the-art AI methods and the complex safety relations in the process industry, we identify and discuss several technical challenges associated with process safety: ① knowledge acquisition with scarce labels for process safety;② knowledge-based reasoning for process safety;③ accurate fusion of heterogeneous data from various sources;and ④ effective learning for dynamic risk assessment and aided decision-making. Current and future works are also discussed in this context.
文摘Along with the development oflntemet plus and information technology, the future industrial pattern will appear new change. The Internet represents a new economic model, and it uses the results of the development of the developed communication technology and the Internet platform with the existing various areas of known and unknown fields of social and economic to integration depth, giving full play to the advantages of integration, enhancing the innovation ability of the economic and the production adaptability, to create more new opportunities, thus forming a sustainable excellent ecosystem.
文摘The advancement of intelligent manufacturing in Dongguan puts forward new requirements for industrial talents,and the development of new productivity is bound to force enterprises and employees to make adaptive adjustments.The upgrading of intelligent manufacturing is not only the upgrading of intelligent machines but also the upgrading of the human brain,which includes the reshaping and cultivation of industrial talents.Based on field research,this study analyzes the different characteristics of the traditional and the new intelligent manufacturing model,as well as summarizes the characteristics of industrial talents and the changing trend of talent demand in view of the intelligent manufacturing model in Dongguan.
文摘With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.
基金supported by the International Postdoctoral Exchange Fellowship Program(20180025)National Natural Science Foundation of China(51703180)+2 种基金China Postdoctoral Science Foundation(2018M630191,2017M610634)Shaanxi Postdoctoral Science Foundation(2017BSHEDZZ73)Fundamental Research Funds for the Central Universities(xpt012020006,xjj2017024).
文摘The application of intelligence to manufacturing has emerged as a compelling topic for researchers and industries around the world.However,different terminologies,namely smart manufacturing(SM)and intelligent manufacturing(IM),have been applied to what may be broadly characterized as a similar paradigm by some researchers and practitioners.While SM and IM are similar,they are not identical.From an evolutionary perspective,there has been little consideration on whether the definition,thought,connotation,and technical development of the concepts of SM or IM are consistent in the literature.To address this gap,the work performs a qualitative and quantitative investigation of research literature to systematically compare inherent differences of SM and IM and clarify the relationship between SM and IM.A bibliometric analysis of publication sources,annual publication numbers,keyword frequency,and top regions of research and development establishes the scope and trends of the currently presented research.Critical topics discussed include origin,definitions,evolutionary path,and key technologies of SM and IM.The implementation architecture,standards,and national focus are also discussed.In this work,a basis to understand SM and IM is provided,which is increasingly important because the trend to merge both terminologies rises in Industry 4.0 as intelligence is being rapidly applied to modern manufacturing and human–cyber–physical systems.
基金the International Postdoctoral Exchange Fellowship Program(20180025).
文摘Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks.The intelligent manufacturing(IM)systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms.The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network,which mitigates the severity of industrial chain disruption.In this study,we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks.Considering the constraints of the IM resources,we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
文摘Many articles have been published on intelligent manufacturing, most of which focus on hardware, soft-ware, additive manufacturing, robotics, the Internet of Things, and Industry 4.0. This paper provides a dif-ferent perspective by examining relevant challenges and providing examples of some less-talked-about yet essential topics, such as hybrid systems, redefining advanced manufacturing, basic building blocks of new manufacturing, ecosystem readiness, and technology scalahility. The first major challenge is to (re-)define what the manufacturing of the future will he, if we wish to: ① raise public awareness of new manufacturing's economic and societal impacts, and ② garner the unequivocal support of policy- makers. The second major challenge is to recognize that manufacturing in the future will consist of sys-tems of hybrid systems of human and robotic operators; additive and suhtractive processes; metal and composite materials; and cyher and physical systems. Therefore, studying the interfaces between con- stituencies and standards becomes important and essential. The third challenge is to develop a common framework in which the technology, manufacturing business case, and ecosystem readiness can he eval- uated concurrently in order to shorten the time it takes for products to reach customers. Integral to this is having accepted measures of "scalahility" of non-information technologies. The last, hut not least, chal-lenge is to examine successful modalities of industry-academia-government collaborations through public-private partnerships. This article discusses these challenges in detail.
文摘<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process of the virus imply to increase health security (patient and personal health). In this context, healthcare logistics flows require a new and safety organization improving the hospital performance. The purpose of this paper consists in optimizing healthcare logistics flows by solving problems associated to the internal logistics such as reduction of the personal health wasting time and the protection of both patients and personal health. Then, the methodology corresponds to the use of the hospital sustainable digital transformation as a response to healthcare flows and safety problems. Indeed, social, societal and environmental aspects have to be considered in addition to new technologies such as artificial intelligence (AI), Internet of Things (IoTs), Big data and analytics. These parameters could be used in the healthcare for increasing doctor, nurse, caregiver performance during their daily operations, and patient satisfaction. Indeed, this hospital digital transformation requires the use of large data associated to patients and personal health, algorithms, a performance measurement tool (actual and future state) and a general approach for transforming digitally the hospital flows. The paper findings show that the healthcare logistics performance could be improved with a sustainable digital transformation methodology and an intelligent software tool. This paper aims to develop this healthcare logistics 4.0 methodology and to elaborate the intelligent support system. After an introduction presenting the common hospital flows and their main problems, a literature review will be detailed for showing how existing concepts could contribute to the elaboration of a structured methodology. The structure of the intelligent software tool for the healthcare digital transformation and the tool development processes will be presented. An example will be given for illustrating the development of the tool.</span>
基金supported in part by the Science and Technology development fund(FDCT)of Macao(011/2017/A)the National Natural Science Foundation of China(61803397)。
文摘Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things(IIOT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management.Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart.We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.
基金financially supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(No.61860206014)the Basic Science Research Center Program of National Natural Science Foundation of China(No.61988101)+2 种基金National Key Research and Development Program(No.2020YFB1713700)National Natural Science Foundation of China(Nos.61973321 and 62073342)Science and Technology Innovation Program of Hunan Province(No.2021RC4054).
文摘The nonferrous metallurgical(NFM)industry is a cornerstone industry for a nation’s economy.With the development of artificial technologies and high requirements on environment protection,product quality,and production efficiency,the importance of applying smart manufacturing technologies to comprehensively percept production states and intelligently optimize process operations is becoming widely recognized by the industry.As a brief summary of the smart and optimal manufacturing of the NFM industry,this paper first reviews the research progress on some key facets of the operational optimization of NFM processes,including production and management,blending optimization,modeling,process monitoring,optimization,and control.Then,it illustrates the perspectives of smart and optimal manufacturing of the NFM industry.Finally,it discusses the major research directions and challenges of smart and optimal manufacturing for the NFM industry.This paper will lay a foundation for the realization of smart and optimal manufacturing in nonferrous metallurgy in the future.
文摘Industry 4.0 concepts have brought about a wind of renewal in the organization of companies and their production methods. However, this integration is subject to obstacles when it comes to Small and Medium sized Enterprises—SMEs: the costs of new technologies to be acquired, the level of maturity of the company regarding its level of digitization and automation, human aspects such as training employees to master new technologies, reluctance to change, etc. This article provides a new framework and presents an intelligent support system to facilitate the digital transformation of SMEs. The digitalization is realized through physical, informational, and decisional points of view. To achieve the complete transformation of the company, the framework combines the triptych of performance criteria (cost, quality, time) with the notions of sustainability (with respect to social, societal, and environmental aspects) and digitization through tools to be integrated into the company’s processes. The new framework encompasses the formalisms developed in the literature on Industry 4.0 concepts, information systems and organizational methods as well as a global structure to support and assist operators in managing their operations. In the form of a web application, it will exploit reliable data obtained through information systems such as Enterprise Resources Planning—ERP, Manufacturing Execution System—MES, or Warehouse Management System—WMS and new technologies such as artificial intelligence (deep learning, multi-agent systems, expert systems), big data, Internet of things (IoT) that communicate with each other to assist operators during production processes. To illustrate and validate the concepts and developed tools, use cases of an electronic manufacturing SME have been solved with these concepts and tools, in order to succeed in this company’s digital transformation. Thus, a reference model of the electronics manufacturing companies is being developed for facilitating the future digital transformation of these domain companies. The realization of these use cases and the new reference model are growing up and their future exploitation will be presented as soon as possible.
文摘Digital twin (DT) is drawing significant attention both from the academia, industry and government. However, people from different fields have different understandings and cognitions about DT. In addition, most of the DT application scenarios discussed belong to discrete manufacturing and are not suitable for process manufacturing. Petrochemical industry is a typical process manufacturing with multi-scale hierarchical and functional structure in space and time. This contribution focuses on topics on the application of DT in petrochemical industry including: 1) The specific DT definition by process industry. 2) The three key elements and design of chemical DT. 3) Features and application scenarios of chemical DT from the view of model precision, model scale and asset life cycle. 4) The Four P’s maturity framework of chemical DT, and 5) Prospects for the development of chemical DT.
文摘The article deals with possible approaches to the development trends in the industrial engineering in manufacturing organizations. The authors emphasize the need for integration of advanced industrial engineering in the next generation of manufacturing systems, which responds to new trends of production, innovation and advanced technology. This integration represents a sustainable development, so that humanization of work are increased, more effective use of natural and energy resources are achieved and production costs are reduced. Trends in the products manufacturing must meet both industrial engineering as well as production management. The development trends in the industrial engineering in manufacturing organizations must use methods and tools of advanced industrial engineering to achieve competitiveness. The second part of this article deals with specification of these approaches in next generation of production systems.