Regarding the current difficulties in SME(small and medium enterprise)supervision,especially considering the problem that the emission reduction task cannot be effectively implemented under the off-site daily supervis...Regarding the current difficulties in SME(small and medium enterprise)supervision,especially considering the problem that the emission reduction task cannot be effectively implemented under the off-site daily supervision and the new normal of epidemic prevention with control of heavily polluted weather,a new type of intelligent power management technology has been proposed.Power information collection equipment and intelligent data collection and transmission terminal are installed to collect power consumption information of enterprise production facilities and pollution control facilities,and their operating conditions are monitored in 24 h.Abnormal operation alarm and closed-loop disposal management are provided through the software platform.The practical application of power monitoring technology in Rizhao City proves that the system alarms accurately and monitors efficiently.On the one hand,it has improved the efficiency of daily supervision of the ecological environment department,and can accurately investigate and correct corporate pollution control violations.On the other hand,it has enriched environmental supervision methods to accurately control the implementation of emergency emission reduction measures.The application of this technology has realized the transformation from civil defense to technical defense,from random law enforcement to precise law enforcement,and from on-site law enforcement to off-site law enforcement in the supervision of polluting enterprises in the jurisdiction,creating a new mode of off-site law enforcement for enterprises.展开更多
Dispersed computing can link all devices with computing capabilities on a global scale to form a fully decentralized network,which can make full use of idle computing resources.Realizing the overall resource allocatio...Dispersed computing can link all devices with computing capabilities on a global scale to form a fully decentralized network,which can make full use of idle computing resources.Realizing the overall resource allocation of the dispersed computing system is a significant challenge.In detail,by jointly managing the task requests of external users and the resource allocation of the internal system to achieve dynamic balance,the efficient and stable operation of the system can be guaranteed.In this paper,we first propose a task-resource joint management model,which quantifies the dynamic transformation relationship between the resources consumed by task requests and the resources occupied by the system in dispersed computing.Secondly,to avoid downtime caused by an overload of resources,we introduce intelligent control into the task-resource joint management model.The existence and stability of the positive periodic solution of the model can be obtained by theoretical analysis,which means that the stable operation of dispersed computing can be guaranteed through the intelligent feedback control strategy.Additionally,to improve the system utilization,the task-resource joint management model with bi-directional intelligent control is further explored.Setting control thresholds for the two resources not only reverse restrains the system resource overload,but also carries out positive incentive control when a large number of idle resources appear.The existence and stability of the positive periodic solution of the model are proved theoretically,that is,the model effectively avoids the two extreme cases and ensure the efficient and stable operation of the system.Finally,numerical simulation verifies the correctness and validity of the theoretical results.展开更多
Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing t...Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.展开更多
The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable an...The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.展开更多
The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of spec...The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.展开更多
To address the key problems in the application of intelligent technology in geothermal development,smart application scenarios for geothermal development are constructed.The research status and existing challenges of ...To address the key problems in the application of intelligent technology in geothermal development,smart application scenarios for geothermal development are constructed.The research status and existing challenges of intelligent technology in each scenario are analyzed,and the construction scheme of smart geothermal field system is proposed.The smart geothermal field is an organic integration of geothermal development engineering and advanced technologies such as the artificial intelligence.At present,the technology of smart geothermal field is still in the exploratory stage.It has been tested for application in scenarios such as intelligent characterization of geothermal reservoirs,dynamic intelligent simulation of geothermal reservoirs,intelligent optimization of development schemes and smart management of geothermal development.However,it still faces many problems,including the high computational cost,difficult real-time response,multiple solutions and strong model dependence,difficult real-time optimization of dynamic multi-constraints,and deep integration of multi-source data.The construction scheme of smart geothermal field system is proposed,which consists of modules including the full database,intelligent characterization,intelligent simulation and intelligent optimization control.The connection between modules is established through the data transmission and the model interaction.In the next stage,it is necessary to focus on the basic theories and key technologies in each module of the smart geothermal field system,to accelerate the lifecycle intelligent transformation of the geothermal development and utilization,and to promote the intelligent,stable,long-term,optimal and safe production of geothermal resources.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
This study is to utilize the heat-absorbing and releasing capabilities of phase change materials(PCM)to regulate the surface temperature fluctuations of batteries during charging and discharging.The goal is to keep th...This study is to utilize the heat-absorbing and releasing capabilities of phase change materials(PCM)to regulate the surface temperature fluctuations of batteries during charging and discharging.The goal is to keep the battery within the optimal operating temperature range.The impact of PCM thickness and phase change temperature on battery temperature is investigated by encircling a cylindrical battery with a PCM ring.To improve the thermal conductivity of PCM,expanded graphite(EG) is added to make a composite phase change material(CPCM),and the effects of various EG mass ratios on battery surface temperature and CPCM utilization level are investigated.The findings indicate that increasing PCM thickness effectively extends temperature control time,but its impact is limited.The difference in phase change temperature of PCM controls the battery temperature in different temperature ranges.Lower phase change temperatures are unsuitable for controlling battery temperature in high temperature environments.The addition of EG enhances the thermal conductivity of PCM,leading to further control of battery temperature.The results show that the addition of 6%(mass ratio) EG to CPCM extends the effective temperature control time by 11 min and improves by 28% compared to a single PCM.The CPCM utilization is also more satisfactory and achieved a balance between heat storage and thermal conductivity in a battery thermal management system(BTMS) based on PCM.展开更多
文摘Regarding the current difficulties in SME(small and medium enterprise)supervision,especially considering the problem that the emission reduction task cannot be effectively implemented under the off-site daily supervision and the new normal of epidemic prevention with control of heavily polluted weather,a new type of intelligent power management technology has been proposed.Power information collection equipment and intelligent data collection and transmission terminal are installed to collect power consumption information of enterprise production facilities and pollution control facilities,and their operating conditions are monitored in 24 h.Abnormal operation alarm and closed-loop disposal management are provided through the software platform.The practical application of power monitoring technology in Rizhao City proves that the system alarms accurately and monitors efficiently.On the one hand,it has improved the efficiency of daily supervision of the ecological environment department,and can accurately investigate and correct corporate pollution control violations.On the other hand,it has enriched environmental supervision methods to accurately control the implementation of emergency emission reduction measures.The application of this technology has realized the transformation from civil defense to technical defense,from random law enforcement to precise law enforcement,and from on-site law enforcement to off-site law enforcement in the supervision of polluting enterprises in the jurisdiction,creating a new mode of off-site law enforcement for enterprises.
基金supported in part by the National Science Foundation Project of P.R.China(No.61931001)the Scientific and Technological Innovation Foundation of Foshan,USTB(No.BK20AF003)。
文摘Dispersed computing can link all devices with computing capabilities on a global scale to form a fully decentralized network,which can make full use of idle computing resources.Realizing the overall resource allocation of the dispersed computing system is a significant challenge.In detail,by jointly managing the task requests of external users and the resource allocation of the internal system to achieve dynamic balance,the efficient and stable operation of the system can be guaranteed.In this paper,we first propose a task-resource joint management model,which quantifies the dynamic transformation relationship between the resources consumed by task requests and the resources occupied by the system in dispersed computing.Secondly,to avoid downtime caused by an overload of resources,we introduce intelligent control into the task-resource joint management model.The existence and stability of the positive periodic solution of the model can be obtained by theoretical analysis,which means that the stable operation of dispersed computing can be guaranteed through the intelligent feedback control strategy.Additionally,to improve the system utilization,the task-resource joint management model with bi-directional intelligent control is further explored.Setting control thresholds for the two resources not only reverse restrains the system resource overload,but also carries out positive incentive control when a large number of idle resources appear.The existence and stability of the positive periodic solution of the model are proved theoretically,that is,the model effectively avoids the two extreme cases and ensure the efficient and stable operation of the system.Finally,numerical simulation verifies the correctness and validity of the theoretical results.
基金supported by the 2021 Chinese Academy of Engineering(CAE)International Top-level Forum on Engineering Science and Technology,“Safety and Governance of the High-Speed Railway”。
文摘Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.
文摘The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.
文摘The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.
基金Supported by the National Natural Science Foundation of China(52192620,52125401)。
文摘To address the key problems in the application of intelligent technology in geothermal development,smart application scenarios for geothermal development are constructed.The research status and existing challenges of intelligent technology in each scenario are analyzed,and the construction scheme of smart geothermal field system is proposed.The smart geothermal field is an organic integration of geothermal development engineering and advanced technologies such as the artificial intelligence.At present,the technology of smart geothermal field is still in the exploratory stage.It has been tested for application in scenarios such as intelligent characterization of geothermal reservoirs,dynamic intelligent simulation of geothermal reservoirs,intelligent optimization of development schemes and smart management of geothermal development.However,it still faces many problems,including the high computational cost,difficult real-time response,multiple solutions and strong model dependence,difficult real-time optimization of dynamic multi-constraints,and deep integration of multi-source data.The construction scheme of smart geothermal field system is proposed,which consists of modules including the full database,intelligent characterization,intelligent simulation and intelligent optimization control.The connection between modules is established through the data transmission and the model interaction.In the next stage,it is necessary to focus on the basic theories and key technologies in each module of the smart geothermal field system,to accelerate the lifecycle intelligent transformation of the geothermal development and utilization,and to promote the intelligent,stable,long-term,optimal and safe production of geothermal resources.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
文摘This study is to utilize the heat-absorbing and releasing capabilities of phase change materials(PCM)to regulate the surface temperature fluctuations of batteries during charging and discharging.The goal is to keep the battery within the optimal operating temperature range.The impact of PCM thickness and phase change temperature on battery temperature is investigated by encircling a cylindrical battery with a PCM ring.To improve the thermal conductivity of PCM,expanded graphite(EG) is added to make a composite phase change material(CPCM),and the effects of various EG mass ratios on battery surface temperature and CPCM utilization level are investigated.The findings indicate that increasing PCM thickness effectively extends temperature control time,but its impact is limited.The difference in phase change temperature of PCM controls the battery temperature in different temperature ranges.Lower phase change temperatures are unsuitable for controlling battery temperature in high temperature environments.The addition of EG enhances the thermal conductivity of PCM,leading to further control of battery temperature.The results show that the addition of 6%(mass ratio) EG to CPCM extends the effective temperature control time by 11 min and improves by 28% compared to a single PCM.The CPCM utilization is also more satisfactory and achieved a balance between heat storage and thermal conductivity in a battery thermal management system(BTMS) based on PCM.