Shuyang,an industrial base of wrapped yarn,enjoys the largest number of equipment and largest production in China or even in the world.Shuyang intelligent knitting industrial park was laid a foundation on March 10,and...Shuyang,an industrial base of wrapped yarn,enjoys the largest number of equipment and largest production in China or even in the world.Shuyang intelligent knitting industrial park was laid a foundation on March 10,and factory workshops in 130,000 square meters are topped off in less than three months in the first construction stage,which is 6 months earlier than planned.What is more unexpected is that they are sold out展开更多
Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns i...Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns is a usefulway to impove spectrum efficiency and it is significative forartificial intelligence to be applied in this field.展开更多
To improve the performance of the forest fire smoke detection model and achieve a better balance between detection accuracy and speed, an improved YOLOv4 detection model (MoAm-YOLOv4) that combines a lightweight netwo...To improve the performance of the forest fire smoke detection model and achieve a better balance between detection accuracy and speed, an improved YOLOv4 detection model (MoAm-YOLOv4) that combines a lightweight network and attention mechanism was proposed. Based on the YOLOv4 algorithm, the backbone network CSPDarknet53 was replaced with a lightweight network MobilenetV1 to reduce the model’s size. An attention mechanism was added to the three channels before the output to increase its ability to extract forest fire smoke effectively. The algorithm used the K-means clustering algorithm to cluster the smoke dataset, and obtained candidate frames that were close to the smoke images;the dataset was expanded to 2000 images by the random flip expansion method to avoid overfitting in training. The experimental results show that the improved YOLOv4 algorithm has excellent detection effect. Its mAP can reach 93.45%, precision can get 93.28%, and the model size is only 45.58 MB. Compared with YOLOv4 algorithm, MoAm-YOLOv4 improves the accuracy by 1.3% and reduces the model size by 80% while sacrificing only 0.27% mAP, showing reasonable practicability.展开更多
文摘Shuyang,an industrial base of wrapped yarn,enjoys the largest number of equipment and largest production in China or even in the world.Shuyang intelligent knitting industrial park was laid a foundation on March 10,and factory workshops in 130,000 square meters are topped off in less than three months in the first construction stage,which is 6 months earlier than planned.What is more unexpected is that they are sold out
文摘Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns is a usefulway to impove spectrum efficiency and it is significative forartificial intelligence to be applied in this field.
文摘To improve the performance of the forest fire smoke detection model and achieve a better balance between detection accuracy and speed, an improved YOLOv4 detection model (MoAm-YOLOv4) that combines a lightweight network and attention mechanism was proposed. Based on the YOLOv4 algorithm, the backbone network CSPDarknet53 was replaced with a lightweight network MobilenetV1 to reduce the model’s size. An attention mechanism was added to the three channels before the output to increase its ability to extract forest fire smoke effectively. The algorithm used the K-means clustering algorithm to cluster the smoke dataset, and obtained candidate frames that were close to the smoke images;the dataset was expanded to 2000 images by the random flip expansion method to avoid overfitting in training. The experimental results show that the improved YOLOv4 algorithm has excellent detection effect. Its mAP can reach 93.45%, precision can get 93.28%, and the model size is only 45.58 MB. Compared with YOLOv4 algorithm, MoAm-YOLOv4 improves the accuracy by 1.3% and reduces the model size by 80% while sacrificing only 0.27% mAP, showing reasonable practicability.