Sensory evaluation is the evaluation of signals that a buman receives via its sensory organs. Nowadays sensory evaluation is widely used in quality inspection and quality control of products. and many other fields. Ac...Sensory evaluation is the evaluation of signals that a buman receives via its sensory organs. Nowadays sensory evaluation is widely used in quality inspection and quality control of products. and many other fields. Actually sensory evaluation always give. uncertain and inprecise results, therefore it derivates many problems. we reviews in detail these problem and give some cumputing methods to resolve them.展开更多
The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the p...The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.展开更多
Intelligent Transportation Systems (ITS) play a fundamental role in reducing traffic congestion and increasing safety during daily transportation. These systems can also be useful in improving social welfare leading t...Intelligent Transportation Systems (ITS) play a fundamental role in reducing traffic congestion and increasing safety during daily transportation. These systems can also be useful in improving social welfare leading to general satisfaction. Proper performance evaluation can be efficient in improving the performance of these systems, and providing a scientific assessment index system can assist decision-makers in smart communities to plan for the development of ITS. However, the evaluation of these systems requires identifying appropriate indicators of performance evaluation that are consistent with the views of the beneficiaries of these systems. In this paper, performance evaluation indicators of ITS have been identified, and three indicators entitled “environmental and safety”, “assistance in reducing traffic congestion” and “attractive public transport” are presented to evaluate the performance of these systems. Moreover, the intelligent transport systems of the Tehran-Karaj Freeway in Iran are studied, and inferential statistical methods are employed to test the research hypotheses. It is worth noticing that in this study, a one-sample T-test method is used for hypotheses assessment and the SPSS software was used to analyze the findings. Also, the results demonstrated that the performance of ITS in the Tehran-Karaj Freeway regarding the indicators, such as “Declaration of route blocking information due to maintenance or reconstruction” and “Declaration of path geometry conditions” has not been acceptable.展开更多
The article presents a case study about thermal comfort in two public squares located in the coastal region of southeastern Brazil, within a post-occupational assessment context where it was sought to estimate the the...The article presents a case study about thermal comfort in two public squares located in the coastal region of southeastern Brazil, within a post-occupational assessment context where it was sought to estimate the thermal sensation and perception of the users generating systematized knowledge about the built environment. The objective is to instruct future interventions for improvement in the living condition where it is particularly important for the success of the activities predicted there. Surveys on thermal comfort along with goers of the squares were held on three consecutive days in April 2013 and February 2014 with microclimate monitoring of the places adopting the predictive PET (physiological equivalent temperature) index calculated based on the bioclimatic model Rayman. The obtained data set generated valuable information about the pattern of thermal comfort allowing understanding the analytical correlations between PET index, climate variables and the perception of comfort. The article seeks to contribute towards the recognition of bioclimatic specificities in the project process aimed to the improvement of the environmental and social performance of public squares and aspects that are relevant to the urban planners.展开更多
Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects.In order to realize the comprehensive ...Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects.In order to realize the comprehensive and scientific intelligent evaluation of the system,this paper proposes an evaluation model based on combination entropy weight rank order-technique for order preference by similarity to an ideal solution(TOPSIS)and Niche Immune Lion Algorithm-Extreme Learning Machine with Kernel(NILAKELM).Firstly,the sustainability evaluation indicator system of the regional microgrid interconnection system is constructed fromfour aspects of economic,environmental,social,and technical characteristics,and the evaluation indicators are explained.Then,the classical evaluationmodel based on TOPSIS is constructed,and the entropy weight method and rank order method(RO)are coupled to obtain the indicator weight.The niche immune algorithm is used to improve the lion algorithm,and the improved lion algorithm is used to optimize the parameters of KELM,and the intelligent evaluation model based on NILA-KELM is obtained to realize fast real-time calculation.Finally,the scientificity and accuracy of themodel proposed in this paper are verified.The model proposed in this paper has the lowest RMSE,MAE and RE values,indicating that its intelligent evaluation results are the most accurate.This study is conducive to the horizontal comparison of the overall performance of regional microgrid interconnection system projects,helps investors to choose the most promising project scheme,and helps the government to find feasible project.展开更多
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan...State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.展开更多
Taking the Donghaochong River as a study case, the environmental evolution process and spatial characteristics of Donghaochong River are analyzed through field investigation, questionnaire and in-depth interview in th...Taking the Donghaochong River as a study case, the environmental evolution process and spatial characteristics of Donghaochong River are analyzed through field investigation, questionnaire and in-depth interview in the context of urban renewal and combining relevant historical documents and statistical data. From the perspective of users, the behavior characteristics and use demand of surrounding users for waterfront space of Donghaochong River in Guangzhou City and the evaluation of usage situation before and after reconstruction of Donghaochong River are summarized to provide relevant optimization suggestions for the creation of satisfactory waterfront landscape environment for users.展开更多
Low efficiency in teaching and time-consuming in writing evaluation are two big problems for college English teachers.Therefore,it is necessary to create a new teaching model to solve these problems existing in tradit...Low efficiency in teaching and time-consuming in writing evaluation are two big problems for college English teachers.Therefore,it is necessary to create a new teaching model to solve these problems existing in traditional classroom-based teaching.This research adopts the research methods of test comparison before and after the students’composition experiment,questionnaire and semi-open interviews.Empirical research on a new teaching model that integrates the intelligent composition review and reform system represented by Piangai.com and the collaborative evaluation of teachers and students is conducted.The research results show that the new writing teaching model improves the quality of students’writing,promotes students’learning initiative,and enhances students’writing self-efficacy.This writing teaching model provides ideas for solving the problem of time-consuming and inefficient English writing teaching in large classes.展开更多
With the upsurge of artificial intelligence(AI)technology in the medical field,its application in ophthalmology has become a cutting-edge research field.Notably,machine learning techniques have shown remarkable achiev...With the upsurge of artificial intelligence(AI)technology in the medical field,its application in ophthalmology has become a cutting-edge research field.Notably,machine learning techniques have shown remarkable achievements in diagnosing,intervening,and predicting ophthalmic diseases.To meet the requirements of clinical research and fit the actual progress of clinical diagnosis and treatment of ophthalmic AI,the Ophthalmic Imaging and Intelligent Medicine Branch and the Intelligent Medicine Committee of Chinese Medicine Education Association organized experts to integrate recent evaluation reports of clinical AI research at home and abroad and formed a guideline on clinical research evaluation of AI in ophthalmology after several rounds of discussion and modification.The main content includes the background and method of developing this guideline,an introduction to international guidelines on the clinical research evaluation of AI,and the evaluation methods of clinical ophthalmic AI models.This guideline introduces general evaluation methods of clinical ophthalmic AI research,evaluation methods of clinical ophthalmic AI models,and commonly-used indices and formulae for clinical ophthalmic AI model evaluation in detail,and amply elaborates the evaluation methods of clinical ophthalmic AI trials.This guideline aims to provide guidance and norms for clinical researchers of ophthalmic AI,promote the development of regularization and standardization,and further improve the overall level of clinical ophthalmic AI research evaluations.展开更多
The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epi...The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters.展开更多
A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The st...A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The structure and process of this network is clear. Fuzzy rules (knowledge) are expressed in the model explicitly, and can be self-adjusted by learning from samples. Genetic algorithm (GA) is employed as the learning algorithm to train the network, and makes the training of the model efficient. This model is a self-learning and self-adaptive system with a rule set revised by training.展开更多
After a systematic review of 38 current intelligent city evaluation systems (ICESs) from around the world, this research analyzes the secondary and tertiary indicators of these 38 ICESs from the perspec- tives of sc...After a systematic review of 38 current intelligent city evaluation systems (ICESs) from around the world, this research analyzes the secondary and tertiary indicators of these 38 ICESs from the perspec- tives of scale structuring, approaches and indicator selection, and determines their common base. From this base, the fundamentals of the City Intelligence Quotient (City IOD Evaluation System are developed and five dimensions are selected after a clustering analysis. The basic version, City IQ Evaluation System 1.0, involves 275 experts from 14 high-end research institutions, which include the Chinese Academy of Engineering, the National Academy of Science and Engineering (Germany), the Royal Swedish Academy of Engineering Sciences, the Planning Management Center of the Ministry of Housing and Urban-Rural Development of China, and the Development Research Center of the State Council of China. City IQ Evaluation System 2.0 is further developed, with improvements in its universality, openness, and dy- namic adjustment capability. After employing deviation evaluation methods in the IQ assessment, City IQ Evaluation System 3.0 was conceived. The research team has conducted a repeated assessment of 41 intelligent cities around the world using City IQ Evaluation System 3.0. The results have proved that the City IQ Evaluation System, developed on the basis of intelligent life, features more rational indicators selected from data sources that can offer better universality, openness, and dynamics, and is more sen- sitive and precise.展开更多
E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analyt...E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework.展开更多
Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evalua...Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.展开更多
Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection...Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.展开更多
To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared ...To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared among different systems is a common disadvantage. In this paper, a machining database with data evaluation module is set up to ensure integrity and update. An online monitoring system based on internet of things and multi-sensors "feel" a variety of signal features to "percept" the state in CNC machining process. A high efficiency and green machining parameters optimization system "execute" service-oriented manufacturing, intelligent manufacturing and green manufacturing. The intelligent CNC machining system is applied in production. CNC machining database effectively shares and manages process data among different systems. The prediction accuracy of online monitoring system is up to 98.8% by acquiring acceleration and noise in real time. High efficiency and green machining parameters optimization system optimizes the original processing parameters, and the calculation indicates that optimized processing parameters not only improve production efficiency, but also reduce carbon emissions. The application proves that the shared and service-oriented CNC machining system is reliable and effective. This research presents a shared and service-oriented CNC machining system for intelligent manufacturing process.展开更多
Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring...Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
AI-related research is conducted in various ways,but the reliability of AI prediction results is currently insufficient,so expert decisions are indispensable for tasks that require essential decision-making.XAI(eXplai...AI-related research is conducted in various ways,but the reliability of AI prediction results is currently insufficient,so expert decisions are indispensable for tasks that require essential decision-making.XAI(eXplainable AI)is studied to improve the reliability of AI.However,each XAI methodology shows different results in the same data set and exact model.This means that XAI results must be given meaning,and a lot of noise value emerges.This paper proposes the HFD(Hybrid Feature Dropout)-based XAI and evaluation methodology.The proposed XAI methodology can mitigate shortcomings,such as incorrect feature weights and impractical feature selection.There are few XAI evaluation methods.This paper proposed four evaluation criteria that can give practical meaning.As a result of verifying with the malware data set(Data Challenge 2019),we confirmed better results than other XAI methodologies in 4 evaluation criteria.Since the efficiency of interpretation is verified with a reasonable XAI evaluation standard,The practicality of the XAI methodology will be improved.In addition,The usefulness of the XAI methodology will be demonstrated to enhance the reliability of AI,and it helps apply AI results to essential tasks that require expert decision-making.展开更多
Assessment is an important part of learning process. It can be defined as the process of gathering information for the purpose of making judgments about a current state of affairs presumably for the purpose of enhanci...Assessment is an important part of learning process. It can be defined as the process of gathering information for the purpose of making judgments about a current state of affairs presumably for the purpose of enhancing future outcomes [1]. It determines whether or not the goals of education are being met. Typically, most assessment tools give a numerical score as the result of the assessment. This may not be enough to improve the student’s progress. In this paper we defined main problems in current assessment tools and proposed a new assessment model that uses notions in knowledge space theory to overcome the shortage of the current assessment models. The experiment result showed that this new prototype made the assessment process easier and more effective. However, assessment affects decisions about grades, instructional needs and curriculum. This is an important phase of the learning process being showed in this paper in knowledge states framework. Future research will focus on making the tool behave intelligently to improve students’ learning momentum.展开更多
文摘Sensory evaluation is the evaluation of signals that a buman receives via its sensory organs. Nowadays sensory evaluation is widely used in quality inspection and quality control of products. and many other fields. Actually sensory evaluation always give. uncertain and inprecise results, therefore it derivates many problems. we reviews in detail these problem and give some cumputing methods to resolve them.
文摘The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.
文摘Intelligent Transportation Systems (ITS) play a fundamental role in reducing traffic congestion and increasing safety during daily transportation. These systems can also be useful in improving social welfare leading to general satisfaction. Proper performance evaluation can be efficient in improving the performance of these systems, and providing a scientific assessment index system can assist decision-makers in smart communities to plan for the development of ITS. However, the evaluation of these systems requires identifying appropriate indicators of performance evaluation that are consistent with the views of the beneficiaries of these systems. In this paper, performance evaluation indicators of ITS have been identified, and three indicators entitled “environmental and safety”, “assistance in reducing traffic congestion” and “attractive public transport” are presented to evaluate the performance of these systems. Moreover, the intelligent transport systems of the Tehran-Karaj Freeway in Iran are studied, and inferential statistical methods are employed to test the research hypotheses. It is worth noticing that in this study, a one-sample T-test method is used for hypotheses assessment and the SPSS software was used to analyze the findings. Also, the results demonstrated that the performance of ITS in the Tehran-Karaj Freeway regarding the indicators, such as “Declaration of route blocking information due to maintenance or reconstruction” and “Declaration of path geometry conditions” has not been acceptable.
文摘The article presents a case study about thermal comfort in two public squares located in the coastal region of southeastern Brazil, within a post-occupational assessment context where it was sought to estimate the thermal sensation and perception of the users generating systematized knowledge about the built environment. The objective is to instruct future interventions for improvement in the living condition where it is particularly important for the success of the activities predicted there. Surveys on thermal comfort along with goers of the squares were held on three consecutive days in April 2013 and February 2014 with microclimate monitoring of the places adopting the predictive PET (physiological equivalent temperature) index calculated based on the bioclimatic model Rayman. The obtained data set generated valuable information about the pattern of thermal comfort allowing understanding the analytical correlations between PET index, climate variables and the perception of comfort. The article seeks to contribute towards the recognition of bioclimatic specificities in the project process aimed to the improvement of the environmental and social performance of public squares and aspects that are relevant to the urban planners.
基金This work is supported by Natural Science Foundation of Hebei Province,China(Project No.G2020403008)Humanities and Social Science Research Project of Hebei Education Department,China(Project No.SD2021044)the Fundamental Research Funds for the Universities in Hebei Province,China(Project No.QN202210).
文摘Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects.In order to realize the comprehensive and scientific intelligent evaluation of the system,this paper proposes an evaluation model based on combination entropy weight rank order-technique for order preference by similarity to an ideal solution(TOPSIS)and Niche Immune Lion Algorithm-Extreme Learning Machine with Kernel(NILAKELM).Firstly,the sustainability evaluation indicator system of the regional microgrid interconnection system is constructed fromfour aspects of economic,environmental,social,and technical characteristics,and the evaluation indicators are explained.Then,the classical evaluationmodel based on TOPSIS is constructed,and the entropy weight method and rank order method(RO)are coupled to obtain the indicator weight.The niche immune algorithm is used to improve the lion algorithm,and the improved lion algorithm is used to optimize the parameters of KELM,and the intelligent evaluation model based on NILA-KELM is obtained to realize fast real-time calculation.Finally,the scientificity and accuracy of themodel proposed in this paper are verified.The model proposed in this paper has the lowest RMSE,MAE and RE values,indicating that its intelligent evaluation results are the most accurate.This study is conducive to the horizontal comparison of the overall performance of regional microgrid interconnection system projects,helps investors to choose the most promising project scheme,and helps the government to find feasible project.
文摘State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.
文摘Taking the Donghaochong River as a study case, the environmental evolution process and spatial characteristics of Donghaochong River are analyzed through field investigation, questionnaire and in-depth interview in the context of urban renewal and combining relevant historical documents and statistical data. From the perspective of users, the behavior characteristics and use demand of surrounding users for waterfront space of Donghaochong River in Guangzhou City and the evaluation of usage situation before and after reconstruction of Donghaochong River are summarized to provide relevant optimization suggestions for the creation of satisfactory waterfront landscape environment for users.
文摘Low efficiency in teaching and time-consuming in writing evaluation are two big problems for college English teachers.Therefore,it is necessary to create a new teaching model to solve these problems existing in traditional classroom-based teaching.This research adopts the research methods of test comparison before and after the students’composition experiment,questionnaire and semi-open interviews.Empirical research on a new teaching model that integrates the intelligent composition review and reform system represented by Piangai.com and the collaborative evaluation of teachers and students is conducted.The research results show that the new writing teaching model improves the quality of students’writing,promotes students’learning initiative,and enhances students’writing self-efficacy.This writing teaching model provides ideas for solving the problem of time-consuming and inefficient English writing teaching in large classes.
基金Supported by National Natural Science Foundation of China(No.61906066)the San Ming Project of Medicine in Shenzhen(No.SZSM202011015)Shenzhen Science and Technology Program(No.KCXFZ20211020163813019).
文摘With the upsurge of artificial intelligence(AI)technology in the medical field,its application in ophthalmology has become a cutting-edge research field.Notably,machine learning techniques have shown remarkable achievements in diagnosing,intervening,and predicting ophthalmic diseases.To meet the requirements of clinical research and fit the actual progress of clinical diagnosis and treatment of ophthalmic AI,the Ophthalmic Imaging and Intelligent Medicine Branch and the Intelligent Medicine Committee of Chinese Medicine Education Association organized experts to integrate recent evaluation reports of clinical AI research at home and abroad and formed a guideline on clinical research evaluation of AI in ophthalmology after several rounds of discussion and modification.The main content includes the background and method of developing this guideline,an introduction to international guidelines on the clinical research evaluation of AI,and the evaluation methods of clinical ophthalmic AI models.This guideline introduces general evaluation methods of clinical ophthalmic AI research,evaluation methods of clinical ophthalmic AI models,and commonly-used indices and formulae for clinical ophthalmic AI model evaluation in detail,and amply elaborates the evaluation methods of clinical ophthalmic AI trials.This guideline aims to provide guidance and norms for clinical researchers of ophthalmic AI,promote the development of regularization and standardization,and further improve the overall level of clinical ophthalmic AI research evaluations.
基金Key discipline construction project for traditional Chinese Medicine in Guangdong province,Grant/Award Number:20220104The construction project of inheritance studio of national famous and old traditional Chinese Medicine experts,Grant/Award Number:140000020132。
文摘The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters.
基金Funded by the Open Research Fund Program of GIS Laboratory of Wuhan University (No. wd200609).
文摘A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The structure and process of this network is clear. Fuzzy rules (knowledge) are expressed in the model explicitly, and can be self-adjusted by learning from samples. Genetic algorithm (GA) is employed as the learning algorithm to train the network, and makes the training of the model efficient. This model is a self-learning and self-adaptive system with a rule set revised by training.
文摘After a systematic review of 38 current intelligent city evaluation systems (ICESs) from around the world, this research analyzes the secondary and tertiary indicators of these 38 ICESs from the perspec- tives of scale structuring, approaches and indicator selection, and determines their common base. From this base, the fundamentals of the City Intelligence Quotient (City IOD Evaluation System are developed and five dimensions are selected after a clustering analysis. The basic version, City IQ Evaluation System 1.0, involves 275 experts from 14 high-end research institutions, which include the Chinese Academy of Engineering, the National Academy of Science and Engineering (Germany), the Royal Swedish Academy of Engineering Sciences, the Planning Management Center of the Ministry of Housing and Urban-Rural Development of China, and the Development Research Center of the State Council of China. City IQ Evaluation System 2.0 is further developed, with improvements in its universality, openness, and dy- namic adjustment capability. After employing deviation evaluation methods in the IQ assessment, City IQ Evaluation System 3.0 was conceived. The research team has conducted a repeated assessment of 41 intelligent cities around the world using City IQ Evaluation System 3.0. The results have proved that the City IQ Evaluation System, developed on the basis of intelligent life, features more rational indicators selected from data sources that can offer better universality, openness, and dynamics, and is more sen- sitive and precise.
基金The authors thank to the deanship of scientific research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023017).
文摘E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework.
基金the National Natural Science Foundation of China(grant no.51208419).
文摘Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.
文摘Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.
基金Supported by National Defense Basic Scientific Research of China(Grant No.A2120110002)National Science Foundation of China(Grant No.11290144)Major National Science and Technology Special Project of China(Grant Nos.2010ZX04014-052,2010ZX0414-017)
文摘To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared among different systems is a common disadvantage. In this paper, a machining database with data evaluation module is set up to ensure integrity and update. An online monitoring system based on internet of things and multi-sensors "feel" a variety of signal features to "percept" the state in CNC machining process. A high efficiency and green machining parameters optimization system "execute" service-oriented manufacturing, intelligent manufacturing and green manufacturing. The intelligent CNC machining system is applied in production. CNC machining database effectively shares and manages process data among different systems. The prediction accuracy of online monitoring system is up to 98.8% by acquiring acceleration and noise in real time. High efficiency and green machining parameters optimization system optimizes the original processing parameters, and the calculation indicates that optimized processing parameters not only improve production efficiency, but also reduce carbon emissions. The application proves that the shared and service-oriented CNC machining system is reliable and effective. This research presents a shared and service-oriented CNC machining system for intelligent manufacturing process.
基金supported by the National Nature Science Foundation of China(61520106008,61790563,U1664263)
文摘Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
基金This work was supported by an Institute of Information and Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.2022-0-00089Development of clustering and analysis technology to identify cyber-attack groups based on life-cycle)and the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No.21-CM-EC-07.
文摘AI-related research is conducted in various ways,but the reliability of AI prediction results is currently insufficient,so expert decisions are indispensable for tasks that require essential decision-making.XAI(eXplainable AI)is studied to improve the reliability of AI.However,each XAI methodology shows different results in the same data set and exact model.This means that XAI results must be given meaning,and a lot of noise value emerges.This paper proposes the HFD(Hybrid Feature Dropout)-based XAI and evaluation methodology.The proposed XAI methodology can mitigate shortcomings,such as incorrect feature weights and impractical feature selection.There are few XAI evaluation methods.This paper proposed four evaluation criteria that can give practical meaning.As a result of verifying with the malware data set(Data Challenge 2019),we confirmed better results than other XAI methodologies in 4 evaluation criteria.Since the efficiency of interpretation is verified with a reasonable XAI evaluation standard,The practicality of the XAI methodology will be improved.In addition,The usefulness of the XAI methodology will be demonstrated to enhance the reliability of AI,and it helps apply AI results to essential tasks that require expert decision-making.
文摘Assessment is an important part of learning process. It can be defined as the process of gathering information for the purpose of making judgments about a current state of affairs presumably for the purpose of enhancing future outcomes [1]. It determines whether or not the goals of education are being met. Typically, most assessment tools give a numerical score as the result of the assessment. This may not be enough to improve the student’s progress. In this paper we defined main problems in current assessment tools and proposed a new assessment model that uses notions in knowledge space theory to overcome the shortage of the current assessment models. The experiment result showed that this new prototype made the assessment process easier and more effective. However, assessment affects decisions about grades, instructional needs and curriculum. This is an important phase of the learning process being showed in this paper in knowledge states framework. Future research will focus on making the tool behave intelligently to improve students’ learning momentum.