Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as ...Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as it enables accurate diagnosis,treatment planning,and monitoring of various diseases and conditions.Due to the lack of sufficient medical images,it is challenging to achieve an accurate segmentation,especially with the application of deep learning networks.The aim of this work is to study transfer learning from T1-weighted(T1-w)to T2-weighted(T2-w)MR sequences to enhance bone segmentation with minimal required computation resources.With the use of an excitation-based convolutional neural networks,four transfer learning mechanisms are proposed:transfer learning without fine tuning,open fine tuning,conservative fine tuning,and hybrid transfer learning.Moreover,a multi-parametric segmentation model is proposed using T2-w MR as an intensity-based augmentation technique.The novelty of this work emerges in the hybrid transfer learning approach that overcomes the overfitting issue and preserves the features of both modalities with minimal computation time and resources.The segmentation results are evaluated using 14 clinical 3D brain MR and CT images.The results reveal that hybrid transfer learning is superior for bone segmentation in terms of performance and computation time with DSCs of 0.5393±0.0007.Although T2-w-based augmentation has no significant impact on the performance of T1-w MR segmentation,it helps in improving T2-w MR segmentation and developing a multi-sequences segmentation model.展开更多
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich...A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.展开更多
BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of t...BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of the entire gastrointestinal tract is time-consuming and requires a heavy workload,which affects the accuracy of diagnosis.AIM To evaluate whether artificial intelligence can assist the diagnosis and increase the detection rate of angiodysplasias in the small intestine,achieve automatic disease detection,and shorten the capsule endoscopy(CE)reading time.METHODS A convolutional neural network semantic segmentation model with a feature fusion method,which automatically recognizes the category of vascular dysplasia under CE and draws the lesion contour,thus improving the efficiency and accuracy of identifying small intestinal vascular malformation lesions,was proposed.Resnet-50 was used as the skeleton network to design the fusion mechanism,fuse the shallow and depth features,and classify the images at the pixel level to achieve the segmentation and recognition of vascular dysplasia.The training set and test set were constructed and compared with PSPNet,Deeplab3+,and UperNet.RESULTS The test set constructed in the study achieved satisfactory results,where pixel accuracy was 99%,mean intersection over union was 0.69,negative predictive value was 98.74%,and positive predictive value was 94.27%.The model parameter was 46.38 M,the float calculation was 467.2 G,and the time length to segment and recognize a picture was 0.6 s.CONCLUSION Constructing a segmentation network based on deep learning to segment and recognize angiodysplasias lesions is an effective and feasible method for diagnosing angiodysplasias lesions.展开更多
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image segmentation.But,because their initial cluster centers are randomly det...Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image segmentation.But,because their initial cluster centers are randomly determined,it is often seen that certain clusters converge to local optima.In addition to that,pathology image segmentation is also problematic due to uneven lighting,stain,and camera settings during the microscopic image capturing process.Therefore,this study proposes an Improved Slime Mould Algorithm(ISMA)based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell(WBC)segmentation.The ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some extent.This paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image clustering.Numerical and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image segmentation.ISMA-KM and“ab”color channels of CIELab color space provide best results with above-99%accuracy for only nucleus segmentation.Whereas,for entire WBC segmentation,ISMA-KM and the“CbCr”color component of YCbCr color space provide the best results with an accuracy of above 99%.Furthermore,ISMA-KM and ISMA-RKM have the lowest and highest execution times,respectively.On the other hand,ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms(NIOAs).展开更多
Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthr...Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.展开更多
Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teachi...Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning.展开更多
Image segmentation for 3D printing and 3D visualization has become an essential component in many fields of medical research,teaching,and clinical practice.Medical image segmentation requires sophisticated computerize...Image segmentation for 3D printing and 3D visualization has become an essential component in many fields of medical research,teaching,and clinical practice.Medical image segmentation requires sophisticated computerized quantifications and visualization tools.Recently,with the development of artificial intelligence(AI)technology,tumors or organs can be quickly and accurately detected and automatically contoured from medical images.This paper introduces a platform-independent,multi-modality image registration,segmentation,and 3D visualization program,named artificial intelligence-based medical image segmentation for 3D printing and naked eye 3D visualization(AIMIS3D).YOLOV3 algorithm was used to recognize prostate organ from T2-weighted MRI images with proper training.Prostate cancer and bladder cancer were segmented based on U-net from MRI images.CT images of osteosarcoma were loaded into the platform for the segmentation of lumbar spine,osteosarcoma,vessels,and local nerves for 3D printing.Breast displacement during each radiation therapy was quantitatively evaluated by automatically identifying the position of the 3D printed plastic breast bra.Brain vessel from multimodality MRI images was segmented by using model-based transfer learning for 3D printing and naked eye 3D visualization in AIMIS3D platform.展开更多
In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice ima...In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.展开更多
In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparamete...In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters,which can often be a cumbersome manual task.The main aim of this study is to propose a more efficient,less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images.To this end,our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network(FCEDN).The optimization is handled by a novel Genetic Grey Wolf Optimization(G-GWO)algorithm.This algorithm employs the Genetic Algorithm(GA)to generate a diverse set of initial positions.It leverages Grey Wolf Optimization(GWO)to fine-tune these positions within the discrete search space.Testing on the Indian Diabetic Retinopathy Image Dataset(IDRiD),Diabetic Retinopathy,Hypertension,Age-related macular degeneration and Glacuoma ImageS(DR-HAGIS),and Ocular Disease Intelligent Recognition(ODIR)datasets showed that the G-GWO method outperformed four other variants of GWO,GA,and PSO-based hyperparameter optimization techniques.The proposed model achieved impressive segmentation results,with accuracy rates of 98.5%for IDRiD,98.7%for DR-HAGIS,and 98.4%,98.8%,and 98.5%for different sub-datasets within ODIR.These results suggest that the proposed hyperparameter-optimized FCEDN model,driven by the G-GWO algorithm,is more efficient than recent deep-learning models for image segmentation tasks.It thereby presents the potential for increased automation and accuracy in the segmentation of fundus images,mitigating the need for extensive manual hyperparameter adjustments.展开更多
Liver cancer is one of the major diseases with increased mortality in recent years,across the globe.Manual detection of liver cancer is a tedious and laborious task due to which Computer Aided Diagnosis(CAD)models hav...Liver cancer is one of the major diseases with increased mortality in recent years,across the globe.Manual detection of liver cancer is a tedious and laborious task due to which Computer Aided Diagnosis(CAD)models have been developed to detect the presence of liver cancer accurately and classify its stages.Besides,liver cancer segmentation outcome,using medical images,is employed in the assessment of tumor volume,further treatment plans,and response moni-toring.Hence,there is a need exists to develop automated tools for liver cancer detection in a precise manner.With this motivation,the current study introduces an Intelligent Artificial Intelligence with Equilibrium Optimizer based Liver cancer Classification(IAIEO-LCC)model.The proposed IAIEO-LCC technique initially performs Median Filtering(MF)-based pre-processing and data augmentation process.Besides,Kapur’s entropy-based segmentation technique is used to identify the affected regions in liver.Moreover,VGG-19 based feature extractor and Equilibrium Optimizer(EO)-based hyperparameter tuning processes are also involved to derive the feature vectors.At last,Stacked Gated Recurrent Unit(SGRU)classifier is exploited to detect and classify the liver cancer effectively.In order to demonstrate the superiority of the proposed IAIEO-LCC technique in terms of performance,a wide range of simulations was conducted and the results were inspected under different measures.The comparison study results infer that the proposed IAIEO-LCC technique achieved an improved accuracy of 98.52%.展开更多
Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identi...Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.展开更多
对恶劣环境下钢包运行动作姿态信息的有效感知是钢铁安全生产管控智能化需要解决的重要问题。总结钢包运行的时序信息特征,将钢包运行时的复杂安全信息分解为一系列可识别的基础动作,在此基础上构建钢包动作识别数据集。选用时序动作检...对恶劣环境下钢包运行动作姿态信息的有效感知是钢铁安全生产管控智能化需要解决的重要问题。总结钢包运行的时序信息特征,将钢包运行时的复杂安全信息分解为一系列可识别的基础动作,在此基础上构建钢包动作识别数据集。选用时序动作检测模型识别钢包动作信息,并根据钢包运行的视觉特性及精准定位需求将原网络目标检测分支替换为改进后的你只看一次(You Only Look Once,YOLOv8)图像分割模型。试验结果表明,改进后的模型所占存储容量减少63.98%,计算需求降低40.6%;识别准确率和召回率分别提高了0.95%与0.51%,且mAP50达到98.6%,能满足钢包实时精准定位的需求。改进后的时序动作检测模型各类动作平均识别准确率达到87.44%。研究表明,所提出时空动作检测改进模型能有效检测复杂环境内钢包的位置信息与基础动作信息,可以满足钢包复杂工序识别、目标追踪、碰撞预警、倾覆洞穿预警等安全检测任务的需求,降低安全管控所需的人力物力成本。展开更多
基金Swiss National Science Foundation,Grant/Award Number:SNSF 320030_176052Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung,Grant/Award Number:320030_176052。
文摘Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as it enables accurate diagnosis,treatment planning,and monitoring of various diseases and conditions.Due to the lack of sufficient medical images,it is challenging to achieve an accurate segmentation,especially with the application of deep learning networks.The aim of this work is to study transfer learning from T1-weighted(T1-w)to T2-weighted(T2-w)MR sequences to enhance bone segmentation with minimal required computation resources.With the use of an excitation-based convolutional neural networks,four transfer learning mechanisms are proposed:transfer learning without fine tuning,open fine tuning,conservative fine tuning,and hybrid transfer learning.Moreover,a multi-parametric segmentation model is proposed using T2-w MR as an intensity-based augmentation technique.The novelty of this work emerges in the hybrid transfer learning approach that overcomes the overfitting issue and preserves the features of both modalities with minimal computation time and resources.The segmentation results are evaluated using 14 clinical 3D brain MR and CT images.The results reveal that hybrid transfer learning is superior for bone segmentation in terms of performance and computation time with DSCs of 0.5393±0.0007.Although T2-w-based augmentation has no significant impact on the performance of T1-w MR segmentation,it helps in improving T2-w MR segmentation and developing a multi-sequences segmentation model.
基金Projects(6177021519,61503373)supported by National Natural Science Foundation of ChinaProject(N161705001)supported by Fundamental Research Funds for the Central University,China
文摘A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.
基金Chongqing Technological Innovation and Application Development Project,Key Technologies and Applications of Cross Media Analysis and Reasoning,No.cstc2019jscx-zdztzxX0037.
文摘BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of the entire gastrointestinal tract is time-consuming and requires a heavy workload,which affects the accuracy of diagnosis.AIM To evaluate whether artificial intelligence can assist the diagnosis and increase the detection rate of angiodysplasias in the small intestine,achieve automatic disease detection,and shorten the capsule endoscopy(CE)reading time.METHODS A convolutional neural network semantic segmentation model with a feature fusion method,which automatically recognizes the category of vascular dysplasia under CE and draws the lesion contour,thus improving the efficiency and accuracy of identifying small intestinal vascular malformation lesions,was proposed.Resnet-50 was used as the skeleton network to design the fusion mechanism,fuse the shallow and depth features,and classify the images at the pixel level to achieve the segmentation and recognition of vascular dysplasia.The training set and test set were constructed and compared with PSPNet,Deeplab3+,and UperNet.RESULTS The test set constructed in the study achieved satisfactory results,where pixel accuracy was 99%,mean intersection over union was 0.69,negative predictive value was 98.74%,and positive predictive value was 94.27%.The model parameter was 46.38 M,the float calculation was 467.2 G,and the time length to segment and recognize a picture was 0.6 s.CONCLUSION Constructing a segmentation network based on deep learning to segment and recognize angiodysplasias lesions is an effective and feasible method for diagnosing angiodysplasias lesions.
基金This work has been partially supported with the grant received in research project under RUSA 2.0 component 8,Govt.of India,New Delhi.
文摘Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image segmentation.But,because their initial cluster centers are randomly determined,it is often seen that certain clusters converge to local optima.In addition to that,pathology image segmentation is also problematic due to uneven lighting,stain,and camera settings during the microscopic image capturing process.Therefore,this study proposes an Improved Slime Mould Algorithm(ISMA)based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell(WBC)segmentation.The ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some extent.This paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image clustering.Numerical and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image segmentation.ISMA-KM and“ab”color channels of CIELab color space provide best results with above-99%accuracy for only nucleus segmentation.Whereas,for entire WBC segmentation,ISMA-KM and the“CbCr”color component of YCbCr color space provide the best results with an accuracy of above 99%.Furthermore,ISMA-KM and ISMA-RKM have the lowest and highest execution times,respectively.On the other hand,ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms(NIOAs).
文摘Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.
文摘Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning.
文摘Image segmentation for 3D printing and 3D visualization has become an essential component in many fields of medical research,teaching,and clinical practice.Medical image segmentation requires sophisticated computerized quantifications and visualization tools.Recently,with the development of artificial intelligence(AI)technology,tumors or organs can be quickly and accurately detected and automatically contoured from medical images.This paper introduces a platform-independent,multi-modality image registration,segmentation,and 3D visualization program,named artificial intelligence-based medical image segmentation for 3D printing and naked eye 3D visualization(AIMIS3D).YOLOV3 algorithm was used to recognize prostate organ from T2-weighted MRI images with proper training.Prostate cancer and bladder cancer were segmented based on U-net from MRI images.CT images of osteosarcoma were loaded into the platform for the segmentation of lumbar spine,osteosarcoma,vessels,and local nerves for 3D printing.Breast displacement during each radiation therapy was quantitatively evaluated by automatically identifying the position of the 3D printed plastic breast bra.Brain vessel from multimodality MRI images was segmented by using model-based transfer learning for 3D printing and naked eye 3D visualization in AIMIS3D platform.
基金Science and Technology Plan Project of Lanzhou City(No.2014-2-7)
文摘In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.
基金supported in part by the National Natural Science Foundation of China under Grant 11527801 and 41706201.
文摘In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters,which can often be a cumbersome manual task.The main aim of this study is to propose a more efficient,less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images.To this end,our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network(FCEDN).The optimization is handled by a novel Genetic Grey Wolf Optimization(G-GWO)algorithm.This algorithm employs the Genetic Algorithm(GA)to generate a diverse set of initial positions.It leverages Grey Wolf Optimization(GWO)to fine-tune these positions within the discrete search space.Testing on the Indian Diabetic Retinopathy Image Dataset(IDRiD),Diabetic Retinopathy,Hypertension,Age-related macular degeneration and Glacuoma ImageS(DR-HAGIS),and Ocular Disease Intelligent Recognition(ODIR)datasets showed that the G-GWO method outperformed four other variants of GWO,GA,and PSO-based hyperparameter optimization techniques.The proposed model achieved impressive segmentation results,with accuracy rates of 98.5%for IDRiD,98.7%for DR-HAGIS,and 98.4%,98.8%,and 98.5%for different sub-datasets within ODIR.These results suggest that the proposed hyperparameter-optimized FCEDN model,driven by the G-GWO algorithm,is more efficient than recent deep-learning models for image segmentation tasks.It thereby presents the potential for increased automation and accuracy in the segmentation of fundus images,mitigating the need for extensive manual hyperparameter adjustments.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia has funded this project,under grant no.(FP-206-43).
文摘Liver cancer is one of the major diseases with increased mortality in recent years,across the globe.Manual detection of liver cancer is a tedious and laborious task due to which Computer Aided Diagnosis(CAD)models have been developed to detect the presence of liver cancer accurately and classify its stages.Besides,liver cancer segmentation outcome,using medical images,is employed in the assessment of tumor volume,further treatment plans,and response moni-toring.Hence,there is a need exists to develop automated tools for liver cancer detection in a precise manner.With this motivation,the current study introduces an Intelligent Artificial Intelligence with Equilibrium Optimizer based Liver cancer Classification(IAIEO-LCC)model.The proposed IAIEO-LCC technique initially performs Median Filtering(MF)-based pre-processing and data augmentation process.Besides,Kapur’s entropy-based segmentation technique is used to identify the affected regions in liver.Moreover,VGG-19 based feature extractor and Equilibrium Optimizer(EO)-based hyperparameter tuning processes are also involved to derive the feature vectors.At last,Stacked Gated Recurrent Unit(SGRU)classifier is exploited to detect and classify the liver cancer effectively.In order to demonstrate the superiority of the proposed IAIEO-LCC technique in terms of performance,a wide range of simulations was conducted and the results were inspected under different measures.The comparison study results infer that the proposed IAIEO-LCC technique achieved an improved accuracy of 98.52%.
基金The authors would like to confirm that this research work was funded by Institutional Fund Projects under Grant No.(IFPIP:646-829-1443)。
文摘Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.
文摘对恶劣环境下钢包运行动作姿态信息的有效感知是钢铁安全生产管控智能化需要解决的重要问题。总结钢包运行的时序信息特征,将钢包运行时的复杂安全信息分解为一系列可识别的基础动作,在此基础上构建钢包动作识别数据集。选用时序动作检测模型识别钢包动作信息,并根据钢包运行的视觉特性及精准定位需求将原网络目标检测分支替换为改进后的你只看一次(You Only Look Once,YOLOv8)图像分割模型。试验结果表明,改进后的模型所占存储容量减少63.98%,计算需求降低40.6%;识别准确率和召回率分别提高了0.95%与0.51%,且mAP50达到98.6%,能满足钢包实时精准定位的需求。改进后的时序动作检测模型各类动作平均识别准确率达到87.44%。研究表明,所提出时空动作检测改进模型能有效检测复杂环境内钢包的位置信息与基础动作信息,可以满足钢包复杂工序识别、目标追踪、碰撞预警、倾覆洞穿预警等安全检测任务的需求,降低安全管控所需的人力物力成本。