Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and ...Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
The integration of Artificial Intelligence(AI)into healthcare research promises unprecedented advancements in medical diagnostics,treatment personalization,and patient care management.However,these innovations also br...The integration of Artificial Intelligence(AI)into healthcare research promises unprecedented advancements in medical diagnostics,treatment personalization,and patient care management.However,these innovations also bring forth significant ethical challenges that must be addressed to maintain public trust,ensure patient safety,and uphold data integrity.This article sets out to introduce a detailed framework designed to steer governance and offer a systematic method for assuring that AI applications in healthcare research are developed and executed with integrity and adherence to medical research ethics.展开更多
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
With the rapid development of big data and intelligent technology,opportunities and challenges coexist in continuing education work,and the integration of continuing education and intelligent education is imperative.T...With the rapid development of big data and intelligent technology,opportunities and challenges coexist in continuing education work,and the integration of continuing education and intelligent education is imperative.Therefore,China’s continuing education should strengthen the construction of the education system,make long-term plans,strengthen overall management in system construction,promote the transformation of continuing education models,and accelerate the modernization process of education.Based on this,this article analyzes and studies the path of intelligent development of continuing education in the digital era,explores its inevitability,analyzes the main characteristics of intelligent continuing education,explores the problems of intelligent development of continuing education,and proposes strategies for the intelligent development of continuing education.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(ME...The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs.展开更多
The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to ...The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse vibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non collocated. The results obtained by all sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non collocated.展开更多
In this paper, we conduct research on the construction mode of mechanical and electrical integration of intelligent control system based on the multi-agent technique. The development of the modem science and technolog...In this paper, we conduct research on the construction mode of mechanical and electrical integration of intelligent control system based on the multi-agent technique. The development of the modem science and technology has greatly promoted the cross of different subjects and infiltration, caused the technological transformation and revolution in the field of engineering. In the field of mechanical engineering, because of rapid development of microelectronics technology and computer technology to the mechanical industry and its mechanical and electrical integration, which is formed by the penetration of the technology of mechanical industry structure, product, organization, function and structure, mode of the production and management system, great changes have taken place in industrial production by the mechanical electrification "ushered in the development of" mechatronics "as the characteristics of the stage. Our research combines the multi-agent technique to propose the new paradigm for mechanical and electrical integration which is innovative.展开更多
The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been r...The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been regarded as a high level question in the architecture, bridge, tunnel, hydraulic, etc engineering fields.Approaches an integrated intelligent methodology to predict stability and supporting decision in underground drift based on neural network modelling on coal rock mechanical problem is proposed.By the terms of the non linearity numerical simulation, this paper develops integrated intelligent methodology to research on the structure hazardous response strata soft rock drifts.展开更多
The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high...The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation.展开更多
Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF iron...Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.展开更多
With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry ...With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.展开更多
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p...Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.展开更多
The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the ...The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.展开更多
The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfi...The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfire detec-tion and alarming system using deep learning(IWFFDA-DL)model.The pro-posed IWFFDA-DL technique aims to identify forestfires at earlier stages through integrated sensors.The proposed IWFFDA-DL system includes an Inte-grated sensor system(ISS)combining an array of sensors that acts as the major input source that helps to forecast thefire.Then,the attention based convolution neural network with bidirectional long short term memory(ACNN-BLSTM)model is applied to examine and identify the existence of danger.For hyperpara-meter tuning of the ACNN-BLSTM model,the bacterial foraging optimization(BFO)algorithm is employed and thereby enhances the detection performance.Finally,when thefire is detected,the Global System for Mobiles(GSM)modem transmits messages to the authorities to take required actions.An extensive set of simulations were performed and the results are investigated interms of several aspects.The obtained results highlight the betterment of the IWFFDA-DL techni-que interms of various measures.展开更多
This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of...This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.展开更多
Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants.Poor performance problem in maintaining power plants is the result of both human errors,human fa...Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants.Poor performance problem in maintaining power plants is the result of both human errors,human factors and the poor implementation of automation in energy management.This problem can potentially be solved using artificial intelligence(AI)and an integrated management system(IMS).This article investigates the current challenges to improving personnel and energy management performance in power plants,identifies the critical success factors(CSFs)for an integrated intelligent framework,and develops an intelligent framework that enables power plants to improve performance.The theoretical basis is founded on a systematic literature review to locate 110 out of 3108 papers studied carefully to examine the performance architecture that best enables effective maintenance.The findings from this literature review are combined with expert judgment and the big data advantages of AI applications to develop an intelligent model.Data are collected from a power plant in Iraq.To ensure the reliability of the proposed model,various hypotheses are tested using structural equation modeling.The results confirm that the measurement model is acceptable,and that the hypotheses are supported and significant.A case study demonstrates the strong relationship and significance between big data of performance and the CSFs.It is hoped that this model will be adopted to enable performance improvement in power plants.展开更多
This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range o...This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.展开更多
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
基金supported by the National Natural Science Foundation of China(62072475)the Fundamental Research Funds for the Central Universities of Central South University(CX20230356)。
文摘Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
文摘The integration of Artificial Intelligence(AI)into healthcare research promises unprecedented advancements in medical diagnostics,treatment personalization,and patient care management.However,these innovations also bring forth significant ethical challenges that must be addressed to maintain public trust,ensure patient safety,and uphold data integrity.This article sets out to introduce a detailed framework designed to steer governance and offer a systematic method for assuring that AI applications in healthcare research are developed and executed with integrity and adherence to medical research ethics.
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
文摘With the rapid development of big data and intelligent technology,opportunities and challenges coexist in continuing education work,and the integration of continuing education and intelligent education is imperative.Therefore,China’s continuing education should strengthen the construction of the education system,make long-term plans,strengthen overall management in system construction,promote the transformation of continuing education models,and accelerate the modernization process of education.Based on this,this article analyzes and studies the path of intelligent development of continuing education in the digital era,explores its inevitability,analyzes the main characteristics of intelligent continuing education,explores the problems of intelligent development of continuing education,and proposes strategies for the intelligent development of continuing education.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
基金supported by the Ministry of Science and Technology of China(Grant No.2019YFA0705600)the National Natural Science Foundation of China(Grant Nos.51822205,21875121)+2 种基金the Natural Science Foundation of Tianjin(Grant Nos.18JCJQJC46300,19JCZDJC31900)the Ministry of Education of China(Grant No.B12015)the “Frontiers Science Center for New Organic Matter”,Nankai University(Grant No.63181206)。
文摘The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs.
文摘The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse vibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non collocated. The results obtained by all sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non collocated.
文摘In this paper, we conduct research on the construction mode of mechanical and electrical integration of intelligent control system based on the multi-agent technique. The development of the modem science and technology has greatly promoted the cross of different subjects and infiltration, caused the technological transformation and revolution in the field of engineering. In the field of mechanical engineering, because of rapid development of microelectronics technology and computer technology to the mechanical industry and its mechanical and electrical integration, which is formed by the penetration of the technology of mechanical industry structure, product, organization, function and structure, mode of the production and management system, great changes have taken place in industrial production by the mechanical electrification "ushered in the development of" mechatronics "as the characteristics of the stage. Our research combines the multi-agent technique to propose the new paradigm for mechanical and electrical integration which is innovative.
文摘The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been regarded as a high level question in the architecture, bridge, tunnel, hydraulic, etc engineering fields.Approaches an integrated intelligent methodology to predict stability and supporting decision in underground drift based on neural network modelling on coal rock mechanical problem is proposed.By the terms of the non linearity numerical simulation, this paper develops integrated intelligent methodology to research on the structure hazardous response strata soft rock drifts.
基金Supported by the Scientific Research Plan of the Education Department of Jilin Province(2014322)~~
文摘The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation.
基金financially supported by the General Program of the National Natural Science Foundation of China(No.52274326)the Fundamental Research Funds for the Central Universities (Nos.2125018 and 2225008)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202109)。
文摘Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.
文摘With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.
基金supported by the Capital’s Funds for Health Improvement and Research,No.2022-2-2072(to YG).
文摘Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.
基金supportedin part by the National Science Foundation of China(NSFC)under Grant 61631005,Grant 61771065,Grant 61901048in part by the Zhijiang Laboratory Open Project Fund 2020LCOAB01in part by the Beijing Municipal Science and Technology Commission Research under Project Z181100003218015。
文摘The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.
文摘The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfire detec-tion and alarming system using deep learning(IWFFDA-DL)model.The pro-posed IWFFDA-DL technique aims to identify forestfires at earlier stages through integrated sensors.The proposed IWFFDA-DL system includes an Inte-grated sensor system(ISS)combining an array of sensors that acts as the major input source that helps to forecast thefire.Then,the attention based convolution neural network with bidirectional long short term memory(ACNN-BLSTM)model is applied to examine and identify the existence of danger.For hyperpara-meter tuning of the ACNN-BLSTM model,the bacterial foraging optimization(BFO)algorithm is employed and thereby enhances the detection performance.Finally,when thefire is detected,the Global System for Mobiles(GSM)modem transmits messages to the authorities to take required actions.An extensive set of simulations were performed and the results are investigated interms of several aspects.The obtained results highlight the betterment of the IWFFDA-DL techni-que interms of various measures.
文摘This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.
基金This work was supported/funded by the Ministry of Higher Education/University of Technology Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2019/TK08/UTM/02/4).
文摘Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants.Poor performance problem in maintaining power plants is the result of both human errors,human factors and the poor implementation of automation in energy management.This problem can potentially be solved using artificial intelligence(AI)and an integrated management system(IMS).This article investigates the current challenges to improving personnel and energy management performance in power plants,identifies the critical success factors(CSFs)for an integrated intelligent framework,and develops an intelligent framework that enables power plants to improve performance.The theoretical basis is founded on a systematic literature review to locate 110 out of 3108 papers studied carefully to examine the performance architecture that best enables effective maintenance.The findings from this literature review are combined with expert judgment and the big data advantages of AI applications to develop an intelligent model.Data are collected from a power plant in Iraq.To ensure the reliability of the proposed model,various hypotheses are tested using structural equation modeling.The results confirm that the measurement model is acceptable,and that the hypotheses are supported and significant.A case study demonstrates the strong relationship and significance between big data of performance and the CSFs.It is hoped that this model will be adopted to enable performance improvement in power plants.
基金Supported by the High Technology Research and Development Programme of China (No.2002AA421160) and the National Natural Science Foundation of China (No.50375008).
文摘This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.