期刊文献+
共找到224,979篇文章
< 1 2 250 >
每页显示 20 50 100
Vision based intelligent traffic light management system using Faster R‐CNN
1
作者 Syed Konain Abbas Muhammad Usman Ghani Khan +4 位作者 Jia Zhu Raheem Sarwar Naif R.Aljohani Ibrahim A.Hameed Muhammad Umair Hassan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期932-947,共16页
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf... Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies. 展开更多
关键词 access control artificial intelligence computer vision intelligent control
下载PDF
Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning
2
作者 Jishun Ou Jingyuan Li +2 位作者 Chen Wang Yun Wang Qinghui Nie 《Digital Transportation and Safety》 2024年第3期126-143,I0001,I0002,共20页
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud... Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications. 展开更多
关键词 traffic flow forecasting Interpretable machine learning INTERPRETABILITY Ensemble trees intelligent transportation systems
下载PDF
Urban Traffic Control Meets Decision Recommendation System:A Survey and Perspective
3
作者 Qingyuan Ji Xiaoyue Wen +2 位作者 Junchen Jin Yongdong Zhu Yisheng Lv 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2043-2058,共16页
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ... Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field. 展开更多
关键词 Recommendation system traffic control traffic perception traffic prediction
下载PDF
Introduction to the Special Issue on Machine Learning-Guided Intelligent Modeling with Its Industrial Applications
4
作者 Xiong Luo Yongqiang Cheng Zhifang Liao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期7-11,共5页
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Mac... With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Machine Learning(ML)-based intelligentmodelling has become a newparadigm for solving problems in the industrial domain[1–3].With numerous applications and diverse data types in the industrial domain,algorithmic and data-driven ML techniques can intelligently learn potential correlations between complex data and make efficient decisions while reducing human intervention.However,in real-world application scenarios,existing algorithms may have a variety of limitations,such as small data volumes,small detection targets,low efficiency,and algorithmic gaps in specific application domains[4].Therefore,many new algorithms and strategies have been proposed to address the challenges in industrial applications[5–8]. 展开更多
关键词 INTELLIGENCE bringing intelligent
下载PDF
Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems
5
作者 Dong-Wook Kim Gun-Yoon Sin +3 位作者 Kwangsoo Kim Jaesik Kang Sun-Young Im Myung-Mook Han 《Computers, Materials & Continua》 SCIE EI 2024年第9期3637-3653,共17页
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ... In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient. 展开更多
关键词 Cybersecurity exercise synthetic network traffic generative adversarial network traffic generation software-defined networking
下载PDF
Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
6
作者 申瑾 赵建东 +2 位作者 刘华清 姜锐 余智鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期291-301,共11页
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi... With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion. 展开更多
关键词 heterogeneous traffic flow CAV linear stability nonlinear stability energy consumption
下载PDF
Intelligent reflecting surface for sum rate enhancement in MIMO systems
7
作者 Chan-Yeob Park Ji-Sung Jung +2 位作者 Yeong-Rong Lee Beom-Sik Shin Hyoung-Kyu Song 《Digital Communications and Networks》 SCIE CSCD 2024年第1期94-100,共7页
The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of... The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of IRS elements according to the channel conditions.However,the problem of obtaining an appropriate phase value of IRs is difficult to solve due to the non-convex problem.This paper proposes an iterative algorithm for the alternating optimal solution in the Single User Multiple-Input-Multiple-Output(SU-MIMO)systems.The proposed iterative algorithm finds an alternating optimal solution that is the phase value of IRS one by one.The results show that the proposed method has better performance than that of the randomized IRS systems.The number of iterations for maximizing the performance of the proposed algorithm depends on the channel state between the IRS and the receiver. 展开更多
关键词 intelligent reflecting surface MIMO Sum rate
下载PDF
Encrypted Cyberattack Detection System over Encrypted IoT Traffic Based onStatistical Intelligence
8
作者 Il Hwan Ji Ju Hyeon Lee +1 位作者 Seungho Jeon Jung Taek Seo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1519-1549,共31页
In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and d... In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and decryptdata. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomicalfinancial and human casualties. For this reason, the application of encrypted communication to IoT has beenrequired, and the application of encrypted communication to IoT has become possible due to improvements inthe computing performance of IoT devices and the development of lightweight cryptography. The applicationof encrypted communication in IoT has made it possible to use encrypted communication channels to launchcyberattacks. The approach of extracting evidence of an attack based on the primary information of a networkpacket is no longer valid because critical information, such as the payload in a network packet, is encrypted byencrypted communication. For this reason, technology that can detect cyberattacks over encrypted network trafficoccurring in IoT environments is required. Therefore, this research proposes an encrypted cyberattack detectionsystem for the IoT (ECDS-IoT) that derives valid features for cyberattack detection from the cryptographic networktraffic generated in the IoT environment and performs cyberattack detection based on the derived features. ECDSIoT identifies identifiable information from encrypted traffic collected in IoT environments and extracts statisticsbased features through statistical analysis of identifiable information. ECDS-IoT understands information aboutnormal data by learning only statistical features extracted from normal data. ECDS-IoT detects cyberattacks basedonly on the normal data information it has trained. To evaluate the cyberattack detection performance of theproposed ECDS-IoT in this research, ECDS-IoT used CICIoT2023, a dataset containing encrypted traffic generatedby normal and seven categories of cyberattacks in the IoT environment and experimented with cyberattackdetection on encrypted traffic using Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM algorithms. Asa result of evaluating the performance of cyberattack detection for encrypted traffic, ECDS-IoT achieved highperformance such as accuracy 0.99739, precision 0.99154, recall 1.0, F1 score 0.99575, and ROC_AUC 0.99822when using the AE-LSTM algorithm. As shown by the cyberattack detection results of ECDS-IoT, it is possibleto detect most cyberattacks through encrypted traffic. By applying ECDS-IoT to IoT, it can effectively detectcyberattacks concealed in encrypted traffic, promoting the efficient operation of IoT and preventing financial andhuman damage caused by cyberattacks. 展开更多
关键词 IoT cybersecurity IoT encrypted traffic IoT cyberattack detection
下载PDF
AI-Based Helmet Violation Detection for Traffic Management System
9
作者 Yahia Said YahyaAlassaf +5 位作者 Refka Ghodhbani Yazan Ahmad Alsariera Taoufik Saidani Olfa Ben Rhaiem Mohamad Khaled Makhdoum Manel Hleili 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期733-749,共17页
Enhancing road safety globally is imperative,especially given the significant portion of traffic-related fatalities attributed to motorcycle accidents resulting from non-compliance with helmet regulations.Acknowledgin... Enhancing road safety globally is imperative,especially given the significant portion of traffic-related fatalities attributed to motorcycle accidents resulting from non-compliance with helmet regulations.Acknowledging the critical role of helmets in rider protection,this paper presents an innovative approach to helmet violation detection using deep learning methodologies.The primary innovation involves the adaptation of the PerspectiveNet architecture,transitioning from the original Res2Net to the more efficient EfficientNet v2 backbone,aimed at bolstering detection capabilities.Through rigorous optimization techniques and extensive experimentation utilizing the India driving dataset(IDD)for training and validation,the system demonstrates exceptional performance,achieving an impressive detection accuracy of 95.2%,surpassing existing benchmarks.Furthermore,the optimized PerspectiveNet model showcases reduced computational complexity,marking a significant stride in real-time helmet violation detection for enhanced traffic management and road safety measures. 展开更多
关键词 Non-helmet use detection traffic violation SAFETY deep learning optimized PerspectiveNet
下载PDF
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
10
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 PRIVACY-PRESERVING intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
A digital twins enabled underwater intelligent internet vehicle path planning system via reinforcement learning and edge computing
11
作者 Jiachen Yang Meng Xi +2 位作者 Jiabao Wen Yang Li Houbing Herbert Song 《Digital Communications and Networks》 SCIE CSCD 2024年第2期282-291,共10页
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th... The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions. 展开更多
关键词 Digital twins Reinforcement learning Edge computing Underwater intelligent internet vehicle Path planning
下载PDF
Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid
12
作者 Aadel M.Alatwi Abualkasim Bakeer +3 位作者 Sherif A.Zaid Ibrahem E.Atawi Hani Albalawi Ahmed M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1807-1830,共24页
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe... An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES. 展开更多
关键词 Fractional-order proportional integral(FOPI) intelligent controller renewable energy resources superconducting magnetic energy storage OPTIMIZATION
下载PDF
A general Boolean semantic modelling approach for complex and intelligent industrial systems in the framework of DES
13
作者 XU Changyi WANG Yun +1 位作者 DUAN Yiman ZHANG Chao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1219-1230,共12页
Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq... Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems. 展开更多
关键词 industrial complex system operation specifying Boolean semantic discrete event system(DES)theory intelligent operation
下载PDF
Channel Estimation for Reconfigurable Intelligent Surface Aided Multiuser Millimeter-Wave/THz Systems
14
作者 Chu Hongyun Pan Xue Li Baijiang 《China Communications》 SCIE CSCD 2024年第3期91-103,共13页
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b... It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance. 展开更多
关键词 atomic norm minimization cascaded channel estimation convex optimization mmWave/THz reconfigurable intelligent surface(RIS) sparsity
下载PDF
Intelligent 3D garment system of the human body based on deep spiking neural network
15
作者 Minghua JIANG Zhangyuan TIAN +5 位作者 Chenyu YU Yankang SHI Li LIU Tao PENG Xinrong HU Feng YU 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期43-55,共13页
Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables dom... Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion. 展开更多
关键词 intelligent garment system Internet of things Human action recognition Deep learning 3D visualization
下载PDF
Design and Implementation of an Intelligent Monitoring and Early Warning System for Kitchen Garbage Treatment
16
作者 Dexian HUANG Binjun GAN 《Meteorological and Environmental Research》 2024年第3期68-71,共4页
With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monito... With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment. 展开更多
关键词 Environmental sanitation Ecological environment Garbage disposal intelligent systems
下载PDF
The Research on Open Sharing of Higher Education Park Based on Intelligent Security System
17
作者 Yan Dong 《Journal of Computer and Communications》 2024年第3期101-106,共6页
The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, e... The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities. 展开更多
关键词 intelligent Security system Higher Education Park Open Sharing
下载PDF
Artificial-intelligent-powered safety and efficiency improvement for controlling and scheduling in integrated railway systems
18
作者 Jun Liu Gehui Liu +1 位作者 Yu Wang Wanqiu Zhang 《High-Speed Railway》 2024年第3期172-179,共8页
The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s... The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands. 展开更多
关键词 High-speed railway Multi-mode railway system Artificial intelligence Large-scale mode system framework Safety and efficiency improvement
下载PDF
An Intelligent Adaptive Dynamic Algorithm for a Smart Traffic System
19
作者 Ahmed Alsheikhy Yahia Said Tawfeeq Shawly 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期1109-1126,共18页
Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented ... Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents. 展开更多
关键词 Smart traffic control artificial intelligence traffic congestion IOT CNN smart roads
下载PDF
Design and Research of an Intelligent Learning System for University Physics
20
作者 Lin Chen 《Journal of Contemporary Educational Research》 2024年第7期95-99,共5页
In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the d... In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics. 展开更多
关键词 UNIVERSITY PHYSICS intelligent learning system design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部