Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional metho...Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.展开更多
Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to co...Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to cope with the changing traf-fic conditions.Based on real-time traffic information,it is challenging to dynamically re-route connected vehicles to alleviate traffic congestion.Moreover,how to obtain global traffic information while reducing communication costs and improving travel efficiency poses a challenge to the re-routing system.To deal with these challenges,this paper proposes CHRT,a clustering-based hybrid re-routing system for traffic congestion avoidance.CHRT develops a multi-layer hybrid architecture.The central server accesses the global view of traffic,and the distributed part is composed of vehicles divided into clusters to reduce latency and communication overhead.Then,a clustering-based priority mechanism is proposed,which sets priorities for clusters based on realtime traffic information to avoid secondary congestion.Furthermore,to plan the optimal routes for vehicles while alleviating global traffic congestion,this paper presents a multi-metric re-routing algorithm.Through extensive simulations based on the SUMO traffic simulator,CHRT reduces vehicle traveling time,fuel consumption,and CO2 emissions compared to other systems.In addition,CHRT globally alleviates traffic congestion and improves traffic efficiency.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod...In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.展开更多
物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问...物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问题上的准确度与收敛速度,构建了一个结合Aw-Rascle宏观交通流模型的物理信息自适应深度学习模型(physics-informed adaptive deep learning with Aw-Rascle, PIAdapDL-AR),依据有限与局部的交通检测数据,实时准确估计全局交通流状态。主要的改进包括两部分,一是在PIDL框架中的物理部分引入高阶Aw-Rascle交通流模型作为物理约束条件,引导并规范神经网络的训练过程;二是在神经网络部分融合自适应激活函数,替代固定的非线性激活函数,以动态优化神经网络性能。基于NGSIM数据集生成模拟的固定检测器数据和移动检测器数据,进行实验以验证模型有效性。实验结果表明:在不同覆盖率的固定检测数据场景下,PIAdapDL-AR的相对误差相比于基线模型PIDL-LWR降低了34.38%~45.24%;在不同渗透率的移动检测数据场景下,PIAdapDL-AR的相对误差相比于PIDL-LWR降低了18.33%~34.95%;融合自适应激活函数的PIAdapDL-AR的收敛速度优于配置固定激活函数的PIDL-AR,且收敛速度和估计精度均随着自适应激活函数中比例因子的增大而提升。展开更多
As urban transportation increasingly impacts daily life,efficiently utilizing traffic resources and developing public transportation have become crucial for addressing issues such as congestion,frequent accidents,and ...As urban transportation increasingly impacts daily life,efficiently utilizing traffic resources and developing public transportation have become crucial for addressing issues such as congestion,frequent accidents,and noise pollution.The rapid advancement of intelligent autonomous driving technologies,particularly environmental perception technologies,offers new directions for solving these problems.This review discusses the application of multisensor information fusion technology in environmental perception for intelligent vehicles,analyzing the components and performance of various sensors and their specific applications in autonomous driving.Through multisensor information fusion,the accuracy of environmental perception is enhanced,optimizing decision support for autonomous driving systems and thereby improving vehicle safety and driving efficiency.This study also discusses the challenges faced by information fusion technology and future development trends,providing references for further research and application in intelligent transportation systems.展开更多
基金Sponsored by the National Science and Technology Innovation Fund for Small and Medium Enterprises(Grant No.10C26211200144)Tianjin Science and Technology Key Supporting Projects(Grant No.10ZCGYGX18300)
文摘Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.
基金This work was partially supported by the National Key R&D Program of China under Grant 2019YFB1803301the Key Research and Development Program of Shanxi under Grant 201903D121117+1 种基金Beijing Nova Program of Science and Technology under Grant Z191100001119028the National Natural Science Foundation of China under Grant 62001320.
文摘Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to cope with the changing traf-fic conditions.Based on real-time traffic information,it is challenging to dynamically re-route connected vehicles to alleviate traffic congestion.Moreover,how to obtain global traffic information while reducing communication costs and improving travel efficiency poses a challenge to the re-routing system.To deal with these challenges,this paper proposes CHRT,a clustering-based hybrid re-routing system for traffic congestion avoidance.CHRT develops a multi-layer hybrid architecture.The central server accesses the global view of traffic,and the distributed part is composed of vehicles divided into clusters to reduce latency and communication overhead.Then,a clustering-based priority mechanism is proposed,which sets priorities for clusters based on realtime traffic information to avoid secondary congestion.Furthermore,to plan the optimal routes for vehicles while alleviating global traffic congestion,this paper presents a multi-metric re-routing algorithm.Through extensive simulations based on the SUMO traffic simulator,CHRT reduces vehicle traveling time,fuel consumption,and CO2 emissions compared to other systems.In addition,CHRT globally alleviates traffic congestion and improves traffic efficiency.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
文摘In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.
文摘物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问题上的准确度与收敛速度,构建了一个结合Aw-Rascle宏观交通流模型的物理信息自适应深度学习模型(physics-informed adaptive deep learning with Aw-Rascle, PIAdapDL-AR),依据有限与局部的交通检测数据,实时准确估计全局交通流状态。主要的改进包括两部分,一是在PIDL框架中的物理部分引入高阶Aw-Rascle交通流模型作为物理约束条件,引导并规范神经网络的训练过程;二是在神经网络部分融合自适应激活函数,替代固定的非线性激活函数,以动态优化神经网络性能。基于NGSIM数据集生成模拟的固定检测器数据和移动检测器数据,进行实验以验证模型有效性。实验结果表明:在不同覆盖率的固定检测数据场景下,PIAdapDL-AR的相对误差相比于基线模型PIDL-LWR降低了34.38%~45.24%;在不同渗透率的移动检测数据场景下,PIAdapDL-AR的相对误差相比于PIDL-LWR降低了18.33%~34.95%;融合自适应激活函数的PIAdapDL-AR的收敛速度优于配置固定激活函数的PIDL-AR,且收敛速度和估计精度均随着自适应激活函数中比例因子的增大而提升。
基金supported by the National Key R&D Program of China(Grant No.2023YFB4301804)the National Natural Science Foundation of China(Grant Nos.52220105001 and 52221005).
文摘As urban transportation increasingly impacts daily life,efficiently utilizing traffic resources and developing public transportation have become crucial for addressing issues such as congestion,frequent accidents,and noise pollution.The rapid advancement of intelligent autonomous driving technologies,particularly environmental perception technologies,offers new directions for solving these problems.This review discusses the application of multisensor information fusion technology in environmental perception for intelligent vehicles,analyzing the components and performance of various sensors and their specific applications in autonomous driving.Through multisensor information fusion,the accuracy of environmental perception is enhanced,optimizing decision support for autonomous driving systems and thereby improving vehicle safety and driving efficiency.This study also discusses the challenges faced by information fusion technology and future development trends,providing references for further research and application in intelligent transportation systems.