期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems 被引量:1
1
作者 Yuzhou Li Chuanxia Sun Yinglei Hu 《Computers, Materials & Continua》 SCIE EI 2023年第5期3497-3515,共19页
Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification sy... Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification system propels the need for understanding the root causes of automobile accidents.Also,in the case of insurance,it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing.It is observed that drivers with frequent records of paying“fines”are compelled to pay higher insurance payments than drivers without any penalty records.Thus driver identification act as an important information source for the intelligent transport system.This study focuses on a similar objective to implement a machine learning-based approach for driver identification.Raw data is collected from in-vehicle sensors using the controller area network(CAN)and then converted to binary form using a one-hot encoding technique.Then,the transformed data is dimensionally reduced using the Principal Component Analysis(PCA)technique,and further optimal parameters from the dataset are selected using Whale Optimization Algorithm(WOA).The most relevant features are selected and then fed into a Convolutional Neural Network(CNN)model.The proposed model is evaluated against four different use cases of driver behavior.The results show that the best prediction accuracy is achieved in the case of drivers without glasses.The proposed model yielded optimal accuracy when evaluated against the K-Nearest Neighbors(KNN)and Support Vector Machines(SVM)models with and without using dimensionality reduction approaches. 展开更多
关键词 Driver identification intelligent transport system PCA WOA CNN
下载PDF
YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security
2
作者 Fares Alharbi Reem Alshahrani +2 位作者 Mohammed Zakariah Amjad Aldweesh Abdulrahman Abdullah Alghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3697-3722,共26页
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless... Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes. 展开更多
关键词 intelligent transportation system blockchain technology license plate recognition PRIVACY YOLO deep learning technique ALPR
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
3
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems
4
作者 Tejasvi Alladi Varun Kohli +1 位作者 Vinay Chamola F.Richard Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1113-1122,共10页
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ... With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies. 展开更多
关键词 Vehicular Ad-hoc Networks(VANETs) intelligent transportation Systems(ITS) Artificial Intelligence(AI) Deep Learning Internet of Things(IoT)
下载PDF
Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems
5
作者 R.B.Sarooraj S.Prayla Shyry 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2071-2084,共14页
In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the ch... In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission. 展开更多
关键词 intelligent transportation system(ITS) DBSCAN rain optimization algorithm(ROA) trafficflow control
下载PDF
A Nationwide Evaluation of the State of Practice of Performance Measurements for Intelligent Transportation Systems
6
作者 Kwabena A. Abedi Julius Codjoe Raju Thapa 《Journal of Transportation Technologies》 2023年第2期222-242,共21页
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan... State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes. 展开更多
关键词 intelligent transportation Systems ITS Performance Measures ITS Architecture ARC-IT Qualitative Survey EVALUATION NATIONWIDE
下载PDF
Cyber-physical-social System in Intelligent Transportation 被引量:8
7
作者 Gang Xiong Fenghua Zhu +4 位作者 Xiwei Liu Xisong Dong Wuling Huang Songhang Chen Kai Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期320-333,共14页
A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliabilit... A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliability of a physical system,such as vehicle collision avoidance and zero-net energy buildings systems.It has become a hot R&D and practical area from US to EU and other countries.In fact,most of physical systems and their cyber systems are designed,built and used by human beings in the social and natural environments.So,social systems must be of the same importance as their CPSs.The indivisible cyber,physical and social parts constitute the cyber-physical-social system(CPSS),a typical complex system and it’s a challengeable problem to control and manage it under traditional theories and methods.An artificial systems,computational experiments and parallel execution(ACP) methodology is introduced based on which data-driven models are applied to social system.Artificial systems,i.e.,cyber systems,are applied for the equivalent description of physical-social system(PSS).Computational experiments are applied for control plan validation.And parallel execution finally realizes the stepwise control and management of CPSS.Finally,a CPSS-based intelligent transportation system(ITS) is discussed as a case study,and its architecture,three parts,and application are described in detail. 展开更多
关键词 Cyber-physical-social system(CPSS) ACP approach intelligent transportation system(ITS) parallel control and management internet of vehicles social transportation network
下载PDF
An Optimal Deep Learning for Cooperative Intelligent Transportation System
8
作者 K.Lakshmi Srinivas Nagineni +4 位作者 E.Laxmi Lydia A.Francis Saviour Devaraj Sachi Nandan Mohanty Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第7期19-35,共17页
Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a ma... Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a massive quantity of data comprising both mobility and service-related data.For the extraction of meaningful and related details out of the generated data,data science acts as an essential part of the upcoming C-ITS applications.At the same time,prediction of short-term traffic flow is highly essential to manage the traffic accurately.Due to the rapid increase in the amount of traffic data,deep learning(DL)models are widely employed,which uses a non-parametric approach for dealing with traffic flow forecasting.This paper focuses on the design of intelligent deep learning based short-termtraffic flow prediction(IDL-STFLP)model for C-ITS that assists the people in various ways,namely optimization of signal timing by traffic signal controllers,travelers being able to adapt and alter their routes,and so on.The presented IDLSTFLP model operates on two main stages namely vehicle counting and traffic flow prediction.The IDL-STFLP model employs the Fully Convolutional Redundant Counting(FCRC)based vehicle count process.In addition,deep belief network(DBN)model is applied for the prediction of short-term traffic flow.To further improve the performance of the DBN in traffic flow prediction,it will be optimized by Quantum-behaved bat algorithm(QBA)which optimizes the tunable parameters of DBN.Experimental results based on benchmark dataset show that the presented method can count vehicles and predict traffic flowin real-time with amaximumperformance under dissimilar environmental situations. 展开更多
关键词 Cooperative intelligent transportation systems traffic flow prediction deep belief network deep learning vehicle counting
下载PDF
Internet of Things Based Solutions for Transport Network Vulnerability Assessment in Intelligent Transportation Systems
9
作者 Weiwei Liu Yang Tang +3 位作者 Fei Yang Chennan Zhang Dun Cao Gwang-jun Kim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2511-2527,共17页
Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulner... Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals. 展开更多
关键词 Internet of Things intelligent transport Systems vulnerability assessment transport network
下载PDF
Authentication of Vehicles and Road Side Units in Intelligent Transportation System
10
作者 Muhammad Waqas Shanshan Tu +5 位作者 Sadaqat Ur Rehman Zahid Halim Sajid Anwar Ghulam Abbas Ziaul Haq Abbas Obaid Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2020年第7期359-371,共13页
Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and ... Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility. 展开更多
关键词 intelligent transportation system AUTHENTICATION rogue attack
下载PDF
Application of Computer Vision Technology in Intelligent Transportation
11
作者 Chao Tang Meirong Tang 《信息工程期刊(中英文版)》 2022年第1期25-31,共7页
With the social development and the continuous improvement of scientific and technological level,the people's living standards continue to improve,and the demand for intelligent technology is also increasing.In re... With the social development and the continuous improvement of scientific and technological level,the people's living standards continue to improve,and the demand for intelligent technology is also increasing.In recent years,with the increase of the number of cars and the frequent occurrence of traffic accidents,the problem of traffic safety has attracted the attention of all sectors of society,and computer vision technology has been gradually appliedto intelligent transportation.This paper analyzes the application of computer vision technology in detail,so as to provide reference for the development of intelligent transportation in our country. 展开更多
关键词 Computer Vision Technology intelligent transportation Application Analysis
下载PDF
Continual driver behaviour learning for connected vehicles and intelligent transportation systems: Framework, survey and challenges
12
作者 Zirui Li Cheng Gong +6 位作者 Yunlong Lin Guopeng Li Xinwei Wang Chao Lu Miao Wang Shanzhi Chen Jianwei Gong 《Green Energy and Intelligent Transportation》 2023年第4期69-80,共12页
Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep lear... Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep learning(DL),numerous driver behaviour learning(DBL)methods have been proposed and applied in connected vehicles(CV)and intelligent transportation systems(ITS).This study provides a review of DBL,which mainly focuses on typical applications in CV and ITS.First,a comprehensive review of the state-of-the-art DBL is presented.Next,Given the constantly changing nature of real driving scenarios,most existing learning-based models may suffer from the so-called“catastrophic forgetting,”which refers to their inability to perform well in previously learned scenarios after acquiring new ones.As a solution to the aforementioned issue,this paper presents a framework for continual driver behaviour learning(CDBL)by leveraging continual learning technology.The proposed CDBL framework is demonstrated to outperform existing methods in behaviour prediction through a case study.Finally,future works,potential challenges and emerging trends in this area are highlighted. 展开更多
关键词 Driver behaviours Connected vehicles Continual learning Machine learning intelligent transportation systems
原文传递
Socio-Economic Impact Assessment of Intelligent Transport Systems 被引量:3
13
作者 隽志才 吴建平 Mike McDonald 《Tsinghua Science and Technology》 SCIE EI CAS 2006年第3期339-350,共12页
A general review of the socio-economic impact of the intelligent transport system (ITS) is presented with a case study to demonstrate the data envelopment analysis method. Cost-benefit analyses are still the dominan... A general review of the socio-economic impact of the intelligent transport system (ITS) is presented with a case study to demonstrate the data envelopment analysis method. Cost-benefit analyses are still the dominant method for evaluating ITS and other transport engineering projects, while cost effective analyses and multi-criteria appraisals are widely used to define and prioritize objectives by providing useful information for the most promising policy decisions. Both cost-benefit analyses and a data envelopment analysis method are applied to analyze the socio-economic impact of convoy driving systems. The main findings are that a convoy provides a worthwhile benefit-cost ratio when more than 30% of the traffics in the convoys and the traffic load exceeds 5500 vehicles/h for a three-lane motorway. The results also show that for a fixed percentage of convoys, increased demand will increase the data envelopment analysis method relative efficiency and that the neglect of certain output indicators of an ITS may result in underestimation of the system effects. 展开更多
关键词 socio-economic impacts assessment cost-benefit analysis data envelopment analysis intelligent transport system convoy driving
原文传递
An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks 被引量:2
14
作者 Seilendria A. Hadiwardoyo Subhadeep Patra +2 位作者 Carlos T. Calafate Juan-Carlos Cano Pietro Manzoni 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第2期249-262,共14页
Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel time in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this g... Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel time in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one second. 展开更多
关键词 intelligent transportation systems (ITS) vehicular ad-hoc network (VANET) mobile application Android navigation ad-hoc network
原文传递
Vulnerabilities and integrity of precise point positioning for intelligent transport systems:overview and analysis 被引量:6
15
作者 Yujun Du Jinling Wang +1 位作者 Chris Rizos Ahmed El-Mowafy 《Satellite Navigation》 2021年第1期27-48,共22页
The implementation of Intelligent Transport System (ITS) technology is expected to significantly improve road safety and traffic efficiency. One of the key components of ITS is precise vehicle positioning. Positioning... The implementation of Intelligent Transport System (ITS) technology is expected to significantly improve road safety and traffic efficiency. One of the key components of ITS is precise vehicle positioning. Positioning with decimetre to sub-metre accuracy is a fundamental capability for self-driving, and other automated applications. Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning approach for ITS due to its relatively low-cost and flexibility. However, GNSS PPP is vulnerable to several effects, especially those caused by the challenging urban environments, where the ITS technology is most likely needed. To meet the high integrity requirements of ITS applications, it is necessary to carefully analyse potential faults and failures of PPP and to study relevant integrity monitoring methods. In this paper an overview of vulnerabilities of GNSS PPP is presented to identify the faults that need to be monitored when developing PPP integrity monitoring methods. These vulnerabilities are categorised into different groups according to their impact and error sources to assist integrity fault analysis, which is demonstrated with Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) methods. The main vulnerabilities are discussed in detail, along with their causes, characteristics, impact on users, and related mitigation methods. In addition, research on integrity monitoring methods used for accounting for the threats and faults in PPP for ITS applications is briefly reviewed. Both system-level (network-end) and user-level (user-end) integrity monitoring approaches for PPP are briefly discussed, focusing on their development and the challenges in urban scenarios. Some open issues, on which further efforts should focus, are also identified. 展开更多
关键词 intelligent transport system GNSS precise point positioning VULNERABILITY Fault analysis Integrity monitoring
原文传递
Sustainable transit vehicle tracking service,using intelligent transportation system services and emerging communication technologies:A review
16
作者 Ricardo Salazar-Cabrera álvaro Pachón de la Cruz Juan Manuel Madrid Molina 《Journal of Traffic and Transportation Engineering(English Edition)》 CSCD 2020年第6期729-747,共19页
The most salient problems of transit vehicle service in Latin American intermediate cities include:the high number of passengers involved in traffic accidents;traffic congestion caused by transit vehicles,and pollutio... The most salient problems of transit vehicle service in Latin American intermediate cities include:the high number of passengers involved in traffic accidents;traffic congestion caused by transit vehicles,and pollution generated by these vehicles,which increases in high congestion scenarios.To improve upon this situation,a research was conducted on the transit vehicle tracking service,which is a basic service for implementing mobility solutions for the aforementioned problems,the most relevant characteristics of this service for the context of Latin American intermediate cities were identified,and an implementation was proposed.This paper presents the four stages of the study:(a)a review of the state-of-the-art of services or systems related to vehicle tracking,including wireless communications technologies,implemented sustainability approaches,usage of special algorithms for efficiency improvement,and the intelligent transportation system(ITS)architecture used as a basis;(b)the process of identifying relevant characteristics of the service for a given context;(c)proposal of an ITS architecture for this service in an intermediate city,its requirements and the suggested technologies;and(d)development of experiments for validating usage of the key suggested technologies.The review allowed to identify the main service characteristics,with regard to vehicle positioning technologies,the recommended wireless communication technology(long range,LoRa),energy consumption considerations,and use of artificial intelligence(AI)to calculate waiting time of users at bus stops.Finally,an ITS architecture for the city of Popayan(Colombian city)considering the aforementioned characteristics is proposed,and the experiments related to the use of these technologies are described in detail. 展开更多
关键词 transportation engineering intelligent transportation systems Transit vehicle ITS architecture TRACKING Long range
原文传递
Intelligent Framework for Secure Transportation Systems Using Software-Defined-Internet of Vehicles
17
作者 Mohana Priya Pitchai Manikandan Ramachandran +1 位作者 Fadi Al-Turjman Leonardo Mostarda 《Computers, Materials & Continua》 SCIE EI 2021年第9期3947-3966,共20页
The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles ar... The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles are connected to the internet through wireless communication technologies,the Internet of Vehicles network infrastructure is susceptible to flooding attacks.Reconfiguring the network infrastructure is difficult as network customization is not possible.As Software Defined Network provide a flexible programming environment for network customization,detecting flooding attacks on the Internet of Vehicles is integrated on top of it.The basic methodology used is crypto-fuzzy rules,in which cryptographic standard is incorporated in the traditional fuzzy rules.In this research work,an intelligent framework for secure transportation is proposed with the basic ideas of security attacks on the Internet of Vehicles integrated with software-defined networking.The intelligent framework is proposed to apply for the smart city application.The proposed cognitive framework is integrated with traditional fuzzy,cryptofuzzy and Restricted Boltzmann Machine algorithm to detect malicious traffic flows in Software-Defined-Internet of Vehicles.It is inferred from the result interpretations that an intelligent framework for secure transportation system achieves better attack detection accuracy with less delay and also prevents buffer overflow attacks.The proposed intelligent framework for secure transportation system is not compared with existing methods;instead,it is tested with crypto and machine learning algorithms. 展开更多
关键词 Internet of things smart cities software-defined network intelligent transportation system fuzzy inference system
下载PDF
Precise and efficient Chinese license plate recognition in the real monitoring scene of intelligent transportation system
18
作者 Jia Wei Gong Chao 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第3期1-14,共14页
In this paper, the performance of you only look once(YOLO) series detectors on Chinese license plate recognition(LPR) in the real intelligent transportation system(ITS) monitoring scene is investigated. Specially, a p... In this paper, the performance of you only look once(YOLO) series detectors on Chinese license plate recognition(LPR) in the real intelligent transportation system(ITS) monitoring scene is investigated. Specially, a precise and efficient automatic license plate recognition(ALPR) system based on the YOLOv4 detector is proposed. The proposed ALPR system contains three stages including vehicle detection, license plate detection(LPD) and LPR. In vehicle detection stage, YOLOv4 detector is directly applied. In LPD stage, YOLOv4-tiny detector is exploited. In the last stage, the YOLOv4-tiny detector with attention mechanism for LPR is proposed to use. In addition, a large Chinese license plate dataset containing 10 500 images collected from all 31 provinces in the Chinese mainland is created. This Chinese license plate dataset is named Hefei University of Technology license plate version 1(HFUT-LP v1). Particularly, HFUT-LP v1 dataset is collected in the real ITS monitoring scene. In order to compare the performance of different object detection algorithms for ALPR, a variety of object detection algorithms are used to make a comprehensive performance evaluation. Experimental results show that the proposed ALPR system achieves very high accuracy and has very fast processing speed, which is suitable for real-time LPR. 展开更多
关键词 license plate detection(LPD) license plate recognition(LPR) YOLOv4-tiny detector attention mechanism intelligent transportation
原文传递
Intelligent Transport
19
作者 TANG YUANKAI 《Beijing Review》 2009年第42期42-43,共2页
Beijing is using the latest information and communications technologies to streamline the city’s traffic The National Day parade marking the 60th anniversary of the founding of the People’s Republic of China happene... Beijing is using the latest information and communications technologies to streamline the city’s traffic The National Day parade marking the 60th anniversary of the founding of the People’s Republic of China happened on Beijing’s central Tiananmen Square on October 1. The event drew an 展开更多
关键词 intelligent transport
原文传递
Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques
20
作者 Mohammed S.Alsaqer Majid H.Alsulami +1 位作者 Rami N.Alkhawaji Abdulellah A.Alaboudi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3943-3968,共26页
Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,ma... Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain. 展开更多
关键词 intelligent transportation system security engineering smart systems decision making
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部