期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
1
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 PRIVACY-PRESERVING intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning
2
作者 Jishun Ou Jingyuan Li +2 位作者 Chen Wang Yun Wang Qinghui Nie 《Digital Transportation and Safety》 2024年第3期126-143,I0001,I0002,共20页
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud... Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications. 展开更多
关键词 Traffic flow forecasting Interpretable machine learning INTERPRETABILITY Ensemble trees intelligent transportation systems
下载PDF
Review of Key Technologies and Applications in Intelligent Transportation Systems
3
作者 Hanlou Diao Wei Shen 《Journal of Architectural Research and Development》 2024年第6期76-82,共7页
The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the c... The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the concept and overall framework of smart transportation.It emphasizes the application of key technologies,including Traffic Element Identification and Perception,data mining,and Smart Transportation System Integration Technology,in the field.Furthermore,the paper elucidates the current practical applications of smart transportation,showcasing its advancements and implementations in real-world scenarios. 展开更多
关键词 Smart city intelligent transportation Smart bus Smart parking
下载PDF
YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security 被引量:2
4
作者 Fares Alharbi Reem Alshahrani +2 位作者 Mohammed Zakariah Amjad Aldweesh Abdulrahman Abdullah Alghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3697-3722,共26页
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless... Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes. 展开更多
关键词 intelligent transportation system blockchain technology license plate recognition PRIVACY YOLO deep learning technique ALPR
下载PDF
Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems 被引量:1
5
作者 Yuzhou Li Chuanxia Sun Yinglei Hu 《Computers, Materials & Continua》 SCIE EI 2023年第5期3497-3515,共19页
Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification sy... Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification system propels the need for understanding the root causes of automobile accidents.Also,in the case of insurance,it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing.It is observed that drivers with frequent records of paying“fines”are compelled to pay higher insurance payments than drivers without any penalty records.Thus driver identification act as an important information source for the intelligent transport system.This study focuses on a similar objective to implement a machine learning-based approach for driver identification.Raw data is collected from in-vehicle sensors using the controller area network(CAN)and then converted to binary form using a one-hot encoding technique.Then,the transformed data is dimensionally reduced using the Principal Component Analysis(PCA)technique,and further optimal parameters from the dataset are selected using Whale Optimization Algorithm(WOA).The most relevant features are selected and then fed into a Convolutional Neural Network(CNN)model.The proposed model is evaluated against four different use cases of driver behavior.The results show that the best prediction accuracy is achieved in the case of drivers without glasses.The proposed model yielded optimal accuracy when evaluated against the K-Nearest Neighbors(KNN)and Support Vector Machines(SVM)models with and without using dimensionality reduction approaches. 展开更多
关键词 Driver identification intelligent transport system PCA WOA CNN
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
6
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques
7
作者 Mohammed S.Alsaqer Majid H.Alsulami +1 位作者 Rami N.Alkhawaji Abdulellah A.Alaboudi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3943-3968,共26页
Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,ma... Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain. 展开更多
关键词 intelligent transportation system security engineering smart systems decision making
下载PDF
A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems
8
作者 Tejasvi Alladi Varun Kohli +1 位作者 Vinay Chamola F.Richard Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1113-1122,共10页
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ... With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies. 展开更多
关键词 Vehicular Ad-hoc Networks(VANETs) intelligent Transportation Systems(ITS) Artificial Intelligence(AI) Deep Learning Internet of Things(IoT)
下载PDF
Intelligent Vehicular Communication Using Vulnerability Scoring Based Routing Protocol
9
作者 M.Ramya Devi I.Jasmine Selvakumari Jeya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期31-45,共15页
Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including... Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including such self-driving cars.In the existing systems,there is a maximum communication delay while transmitting the messages.The proposed system uses hybrid Cooperative,Vehicular Communication Management Framework called CAMINO(CA).Further it uses,energy efficient fast message routing protocol with Common Vulnerability Scoring System(CVSS)methodology for improving the communication delay,throughput.It improves security while transmitting the messages through networks.In this research,we present a unique intelligent vehicular infrastructure communication management framework.This framework includes additional stability for both short and long-range mobile communications.It also includes built-in cooperative intelligent transport system(C-ITS)capabilities for experimental verification in real-world contexts.In addition,an energy efficient-fast message distribution routing protocol(EE-FMDRP)has been presented.This combines the benefits between both temporal and direction oriented routing methods.This has been suggested for distributing information from the origin ends to the predetermined objective in a quick,accurate,and effective manner in the event of an emergency.The critical value scale score(CVSS)employ ratings to measure the assault probability in Markov chains.Probabilities of chained transitions allow us to statistically evaluate the integrity of a group of IoVassets.Thus the proposed method helps to enhance the vehicular systems.The CAMINO with energy efficient fast protocol using CVSS(CA-EEFP-CVSS)method outperforms in terms of shortest transmission latency achieves 2.6 sec,highest throughput 11.6%,and lowest energy usage 17%and PDR 95.78%. 展开更多
关键词 intelligent automation intelligent transport system vehicular networks markov chains internet of vehicles critical value scale score
下载PDF
Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems
10
作者 R.B.Sarooraj S.Prayla Shyry 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2071-2084,共14页
In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the ch... In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission. 展开更多
关键词 intelligent transportation system(ITS) DBSCAN rain optimization algorithm(ROA) trafficflow control
下载PDF
A Nationwide Evaluation of the State of Practice of Performance Measurements for Intelligent Transportation Systems
11
作者 Kwabena A. Abedi Julius Codjoe Raju Thapa 《Journal of Transportation Technologies》 2023年第2期222-242,共21页
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan... State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes. 展开更多
关键词 intelligent Transportation Systems ITS Performance Measures ITS Architecture ARC-IT Qualitative Survey EVALUATION NATIONWIDE
下载PDF
Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles
12
作者 Othman S.Al-Heety Zahriladha Zakaria +4 位作者 Ahmed Abu-Khadrah Mahamod Ismail Sarmad Nozad Mahmood Mohammed Mudhafar Shakir Hussein Alsariera 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2103-2127,共25页
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled... Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system. 展开更多
关键词 Q-LEARNING intelligent transportation system(ITS) traffic control vehicular communication kalman filtering smart city Internet of Things
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
13
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
Visual object-oriented application for lane following on intelligent highway system
14
作者 王春燕 王炜 +1 位作者 陆建 常玉林 《Journal of Southeast University(English Edition)》 EI CAS 2003年第2期165-167,共3页
A visual object-oriented software for lane following on intelligent highway system (IHS) is proposed. According to object-oriented theory, 3 typical user services of self-check, transfer of human driving and automatic... A visual object-oriented software for lane following on intelligent highway system (IHS) is proposed. According to object-oriented theory, 3 typical user services of self-check, transfer of human driving and automatic running and abnormal information input from the sensors are chosen out. In addition, the functions of real-time display, information exchanging interface, determination and operation interweaving in the 3 user services are separated into 5 object-oriented classes. Moreover, the 5 classes are organized in the visual development environment. At last, experimental result proves the validity and reliability of the control application. 展开更多
关键词 intelligent transportation system intelligent highway system lane following visual object-oriented application
下载PDF
Smart Parking Management System “MOTAH”
15
作者 Iman Alansari Ghadah Alnamlah +2 位作者 Razan Abduallah Jumana Alluqmani Alaa Alzahrani 《Journal of Software Engineering and Applications》 2024年第6期541-552,共12页
With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerba... With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions. 展开更多
关键词 Car Parking Traffic Density Estimation intelligent Transportation CONGESTION CONTROL Parking Arrangement Parking Behavior
下载PDF
Artificial Intelligence-Based Sentiment Analysis of Dynamic Message Signs that Report Fatality Numbers Using Connected Vehicle Data
16
作者 Dorcas O. Okaidjah Jonathan Wood Christopher M. Day 《Journal of Transportation Technologies》 2024年第4期590-606,共17页
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe... This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone. 展开更多
关键词 intelligent Transportation System Sentiment Analysis Dynamic Message Signs Large Language Models Traffic Safety Artificial Intelligence
下载PDF
Analyze the Impact of ITS in Improving the Efficiency of Road Tax and Fee Collection Use of Digital Technologies in the City of Bujumbura
17
作者 Fiston Niyonkuru Ilundu Wail Walumbuka Jérémie Ndikumagenge 《Open Journal of Applied Sciences》 2024年第6期1464-1473,共10页
Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, th... Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, the transport structure is vulnerable, under attack, or even damaged or destroyed. This is prompting decision-makers to look for every possible way to enable dynamic management of the road system, as well as the collection of tax revenues attributable to this sector. To reach this stage, we postulate that the introduction of the Intelligent Transport System (ITS) into the road tax and fee collection process would make a significant contribution (road safety, zero cash on silk Safety Officers, payment of a fine, eradication of road corruption etc.) to the digitization of the various transport sectors. As far as the city of Bujumbura is concerned (our field of intervention), the applicability of the present System could thus meet the expectations of the decision-maker, certain drivers and, by the same token, contribute to the promotion of Digital Technology in Burundi. 展开更多
关键词 intelligent Transport System Infra-Red Sensor Network OCR Algorithm Vision Systems Multi-Agent System
下载PDF
Telematics as a Transformative Agent for the Zimbabwean Auto Insurance Ecosystem
18
作者 Prosper Tafadzwa Denhere Joyce Denhere +4 位作者 Gracious Mutipforo Chipo Katsande Allan Muzenda Nelson Matanana Gibson Muridzi 《Journal of Computer and Communications》 2024年第7期39-58,共20页
Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a... Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption. 展开更多
关键词 TELEMATICS Vehicle Tracking Systems Usage Based Insurance Digital Insurance Vehicle Management Information Systems intelligent Transportation Systems
下载PDF
Analysis of the Application of Artificial Intelligence in Transportation
19
作者 Pei Liu 《Journal of World Architecture》 2024年第3期78-83,共6页
With the advancement of the information age,the transportation industry has experienced rapid growth,leading to an expansion in the scale and number of highway constructions.However,this development has also given ris... With the advancement of the information age,the transportation industry has experienced rapid growth,leading to an expansion in the scale and number of highway constructions.However,this development has also given rise to numerous traffic issues,including frequent vehicle congestion and traffic accidents.To address these problems,it is essential to leverage modern technology for real-time information collection and analysis,providing robust technical support for intelligent transportation systems.This paper focuses on artificial intelligence(AI)technology,explaining its concept and its role in intelligent transportation.It reviews the various application areas and analyzes the use of AI in intelligent transportation.Finally,it proposes strategies for applying AI to promote the healthy development of intelligent transportation systems. 展开更多
关键词 Artificial intelligence intelligent transportation Traffic monitoring Unmanned driving
下载PDF
Street Lamp Status Warning System Based on Internet of Things Technology
20
作者 Hanli Wang Yuanzhi Liu Yilin Wu 《Journal of Electronic Research and Application》 2024年第4期154-160,共7页
This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of ... This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of street lights according to road conditions to reduce unnecessary power waste.The system has a mature self-fault detection mechanism and is equipped with a wireless communication device for data exchange and timely communication with the host computer terminal.The intelligent street lamp system in this paper can be used to reduce the occurrence of pedestrian and vehicle accidents at intersections,and at the same time reduce the consumption of manpower and material resources for street lamp troubleshooting,to achieve energy conservation and emission reduction. 展开更多
关键词 Internet of Things Early warning system intelligent transportation
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部