This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology beco...As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.展开更多
Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based cont...Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions,thus declining the car-following performance.To solve this problem,a car-following strategy of ICV using EDO adjusted by reinforcement learning is proposed.Different from the conventional method,the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy.Since the“equivalent disturbance”can be compensated by EDO to a great extent,the disturbance rejection ability of the carfollowing method will be improved significantly.Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.展开更多
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th...The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.展开更多
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles...This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development.展开更多
In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network techno...In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.展开更多
Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication net...Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.展开更多
The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomousl...The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomously.To achieve autonomous driving,several steps,including environment perception,path-planning,and dynamic control,need to be done.However,vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions.Intelligent and connected vehicles(ICV)cloud control system(CCS)has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation.This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs,and cloud control system architecture design,as well as its core technologies development.Based on the analysis,the challenges and suggestions on cloud control system development have been addressed.展开更多
The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circu...The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.展开更多
Intelligent vehicles are advancing at a fast speed with the improvement of automation and connectivity,which opens up new possibilities for different cyber-attacks,including in-vehicle attacks(e.g.,hijacking attacks)a...Intelligent vehicles are advancing at a fast speed with the improvement of automation and connectivity,which opens up new possibilities for different cyber-attacks,including in-vehicle attacks(e.g.,hijacking attacks)and vehicle-to-everything communicationattacks(e.g.,data theft).These problems are becoming increasingly serious with the development of 4G LTE and 5G communication technologies.Although many efforts are made to improve the resilience to cyber attacks,there are still many unsolved challenges.This paper first identifies some major security attacks on intelligent connected vehicles.Then,we investigate and summarize the available defences against these attacks and classify them into four categories:cryptography,network security,software vulnerability detection,and malware detection.Remaining challenges and future directions for preventing attacks on intelligent vehicle systems have been discussed as well.展开更多
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
This paper proposes the architecture of an intelligent flight launcher system as well as fundamental solutions to capability prediction and dynamic planning. This effort reflects the latest progress in the application...This paper proposes the architecture of an intelligent flight launcher system as well as fundamental solutions to capability prediction and dynamic planning. This effort reflects the latest progress in the applications of intelligent and autonomous technology for launcher flights. The paper first describes the characteristics and capabilities of intelligent and autonomous systems and classifies various related technologies. In the context of intelligent and autonomous technology in aerospace engineering, it then focuses on technical difficulties involved with intelligent flight and reviews developments in the field. An E^3 classification model of an intelligent flight launcher is then proposed and its application scenarios are discussed. Based on an intelligent flight system configuration of the launcher, the online trajectory planning and initial value guess are examined, and vertical landing is provided as an example to explain the effects of the implementation of computational intelligence to flight systems.展开更多
Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and ...Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.展开更多
Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot ...Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.展开更多
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea...Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.展开更多
New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-...New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.展开更多
The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data ro...The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.展开更多
To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transfo...To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.展开更多
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
文摘As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.
基金State Key Laboratory of Automotive Safety and Energy,Grant/Award Number:KFY2208National Natural Science Foundation of China,Grant/Award Numbers:U2013601,U20A20225+1 种基金Key Research and Development Plan of Anhui Province,Grant/Award Number:202004a05020058the Natural Science Foundation of Hefei,China(Grant No.2021032)。
文摘Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions,thus declining the car-following performance.To solve this problem,a car-following strategy of ICV using EDO adjusted by reinforcement learning is proposed.Different from the conventional method,the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy.Since the“equivalent disturbance”can be compensated by EDO to a great extent,the disturbance rejection ability of the carfollowing method will be improved significantly.Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.61871283).
文摘The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
文摘This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development.
文摘In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.
文摘Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.
基金Supported by Beijing Nova Program of Science and Technology(Grant No.Z191100001119087)Beijing Municipal Science&Technology Commission(Grant No.Z181100004618005 and Grant No.Z18111000460000)。
文摘The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomously.To achieve autonomous driving,several steps,including environment perception,path-planning,and dynamic control,need to be done.However,vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions.Intelligent and connected vehicles(ICV)cloud control system(CCS)has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation.This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs,and cloud control system architecture design,as well as its core technologies development.Based on the analysis,the challenges and suggestions on cloud control system development have been addressed.
基金Project(2018YFB1600600)supported by the National Key Research and Development Program,ChinaProject(20YJAZH083)supported by the Ministry of Education,China+1 种基金Project(20YJAZH083)supported by the Humanities and Social Sciences,ChinaProject(51878161)supported by the National Natural Science Foundation of China。
文摘The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.
文摘Intelligent vehicles are advancing at a fast speed with the improvement of automation and connectivity,which opens up new possibilities for different cyber-attacks,including in-vehicle attacks(e.g.,hijacking attacks)and vehicle-to-everything communicationattacks(e.g.,data theft).These problems are becoming increasingly serious with the development of 4G LTE and 5G communication technologies.Although many efforts are made to improve the resilience to cyber attacks,there are still many unsolved challenges.This paper first identifies some major security attacks on intelligent connected vehicles.Then,we investigate and summarize the available defences against these attacks and classify them into four categories:cryptography,network security,software vulnerability detection,and malware detection.Remaining challenges and future directions for preventing attacks on intelligent vehicle systems have been discussed as well.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
文摘This paper proposes the architecture of an intelligent flight launcher system as well as fundamental solutions to capability prediction and dynamic planning. This effort reflects the latest progress in the applications of intelligent and autonomous technology for launcher flights. The paper first describes the characteristics and capabilities of intelligent and autonomous systems and classifies various related technologies. In the context of intelligent and autonomous technology in aerospace engineering, it then focuses on technical difficulties involved with intelligent flight and reviews developments in the field. An E^3 classification model of an intelligent flight launcher is then proposed and its application scenarios are discussed. Based on an intelligent flight system configuration of the launcher, the online trajectory planning and initial value guess are examined, and vertical landing is provided as an example to explain the effects of the implementation of computational intelligence to flight systems.
基金Sponsored by the National Natural Science Foundation of China under Grant( 50335040).
文摘Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.
基金supported in part by the Beijing Municipal Science and Technology Project(No.Z191100007419010)Automobile Industry Joint Fund(No.U1764261)of the National Natural Science Foundation of China+1 种基金Shandong Key R&D Program(No.2020CXGC010118)Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province(No.BM20082061706)。
文摘Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.
基金supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2022 Yeungnam University Research Grant.
文摘Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.
基金supported by the National Key Research and Development Program of China (2019YFB1600800)。
文摘New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.
基金Shanghai Summit Discipline in Design,ChinaSpecial Project Funding for the Shanghai Municipal Commission of Economy and Information Civil-Military Inosculation Project,China(No.JMRH-2018-1042)。
文摘The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Higher Education of Ministry of Education (No.705020)
文摘To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.