Intelligent well system is the well that has a set of equipment fixed in the down hole including sensing devices, data transmission system and operating devices for information acquiring, data gathering and decision a...Intelligent well system is the well that has a set of equipment fixed in the down hole including sensing devices, data transmission system and operating devices for information acquiring, data gathering and decision analysis. By this remote control process, the smart well system can ultimately optimize well deliverability; it is used more and more often in oil fields with its stability and control technique. At present, the main intelligent well systems in the worm include SCRAMS, Direct Hydraulic, Digital Hydraulic that belongs to WellDynamics Company, InForce and InCharge that belongs to Baker Oil Tools Company, RMC that belongs to Schlumberger Company. This paper compares different types of systems and their characteristics, recommending the InCharge system as the intelligent well system for East China Sea Oil Field according to its geological and reservoir conditions.展开更多
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o...The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.展开更多
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf...Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.展开更多
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th...The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of...The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of IRS elements according to the channel conditions.However,the problem of obtaining an appropriate phase value of IRs is difficult to solve due to the non-convex problem.This paper proposes an iterative algorithm for the alternating optimal solution in the Single User Multiple-Input-Multiple-Output(SU-MIMO)systems.The proposed iterative algorithm finds an alternating optimal solution that is the phase value of IRS one by one.The results show that the proposed method has better performance than that of the randomized IRS systems.The number of iterations for maximizing the performance of the proposed algorithm depends on the channel state between the IRS and the receiver.展开更多
Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables dom...Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion.展开更多
The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s...The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.展开更多
With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monito...With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment.展开更多
In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the d...In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics.展开更多
Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to...Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to November 2021 were randomly selected,and all samples were manually microscopic examined after the detection of the UN9000 urine analysis line.The intelligent audit rules(including the microscopic review rules and manual verification rules)were validated based on the manual microscopic examination and manual audit,and the rules were adjusted to apply to our laboratory.The laboratory turnaround time(TAT)before and after the application of intelligent audit rules was compared.Result:The microscopic review rate of intelligent rules was 25.63%(292/1139),the true positive rate,false positive rate,true negative rate,and false negative rate were 27.66%(315/1139),6.49%(74/1139),62.34%(710/1139)and 3.51%(40/1139),respectively.The approval consistency rate of manual verification rules was 84.92%(727/856),the approval inconsistency rate was 0%(0/856),the interception consistency rate was 12.61%(108/856),and the interception inconsistency rate was 0%(0/856).Conclusion:The intelligence audit rules for urine analysis by Cui et al.have good clinical applicability in our laboratory.展开更多
This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles...This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development.展开更多
The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the c...The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the concept and overall framework of smart transportation.It emphasizes the application of key technologies,including Traffic Element Identification and Perception,data mining,and Smart Transportation System Integration Technology,in the field.Furthermore,the paper elucidates the current practical applications of smart transportation,showcasing its advancements and implementations in real-world scenarios.展开更多
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud...Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.展开更多
The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, e...The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities.展开更多
Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control ...Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If th...An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.展开更多
文摘Intelligent well system is the well that has a set of equipment fixed in the down hole including sensing devices, data transmission system and operating devices for information acquiring, data gathering and decision analysis. By this remote control process, the smart well system can ultimately optimize well deliverability; it is used more and more often in oil fields with its stability and control technique. At present, the main intelligent well systems in the worm include SCRAMS, Direct Hydraulic, Digital Hydraulic that belongs to WellDynamics Company, InForce and InCharge that belongs to Baker Oil Tools Company, RMC that belongs to Schlumberger Company. This paper compares different types of systems and their characteristics, recommending the InCharge system as the intelligent well system for East China Sea Oil Field according to its geological and reservoir conditions.
基金supported by Systematic Major Project of China State Railway Group Corporation Limited(Grant Number:P2023W002).
文摘The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.
基金National Key R&D Program of China,Grant/Award Number:2022YFC3303600National Natural Science Foundation of China,Grant/Award Number:62077015Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F020010。
文摘Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.
基金supported by the National Natural Science Foundation of China(No.61871283).
文摘The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2022-2018-0-01423)supervised by the ITP(Institute for Information&Communications Technology Planning&Evaluation)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540).
文摘The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of IRS elements according to the channel conditions.However,the problem of obtaining an appropriate phase value of IRs is difficult to solve due to the non-convex problem.This paper proposes an iterative algorithm for the alternating optimal solution in the Single User Multiple-Input-Multiple-Output(SU-MIMO)systems.The proposed iterative algorithm finds an alternating optimal solution that is the phase value of IRS one by one.The results show that the proposed method has better performance than that of the randomized IRS systems.The number of iterations for maximizing the performance of the proposed algorithm depends on the channel state between the IRS and the receiver.
基金Supported by the National Natural Science Foundation of China (62202346)Hubei Key Research and Development Program (2021BAA042)+3 种基金Open project of Engineering Research Center of Hubei Province for Clothing Information (2022HBCI01)Wuhan Applied Basic Frontier Research Project (2022013988065212)MIIT′s AI Industry Innovation Task Unveils Flagship Projects (Key Technologies,Equipment,and Systems for Flexible Customized and Intelligent Manufacturing in the Clothing Industry)Hubei Science and Technology Project of Safe Production Special Fund (Scene Control Platform Based on Proprioception Information Computing of Artificial Intelligence)。
文摘Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion.
基金supported by the National Key R&D Program of China(2022YFB4300500).
文摘The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.
文摘With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment.
文摘In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics.
文摘Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to November 2021 were randomly selected,and all samples were manually microscopic examined after the detection of the UN9000 urine analysis line.The intelligent audit rules(including the microscopic review rules and manual verification rules)were validated based on the manual microscopic examination and manual audit,and the rules were adjusted to apply to our laboratory.The laboratory turnaround time(TAT)before and after the application of intelligent audit rules was compared.Result:The microscopic review rate of intelligent rules was 25.63%(292/1139),the true positive rate,false positive rate,true negative rate,and false negative rate were 27.66%(315/1139),6.49%(74/1139),62.34%(710/1139)and 3.51%(40/1139),respectively.The approval consistency rate of manual verification rules was 84.92%(727/856),the approval inconsistency rate was 0%(0/856),the interception consistency rate was 12.61%(108/856),and the interception inconsistency rate was 0%(0/856).Conclusion:The intelligence audit rules for urine analysis by Cui et al.have good clinical applicability in our laboratory.
文摘This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development.
文摘The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the concept and overall framework of smart transportation.It emphasizes the application of key technologies,including Traffic Element Identification and Perception,data mining,and Smart Transportation System Integration Technology,in the field.Furthermore,the paper elucidates the current practical applications of smart transportation,showcasing its advancements and implementations in real-world scenarios.
基金funded by the National Key R&D Program of China(Grant No.2023YFE0106800)the Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.22YJC630109).
文摘Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.
文摘The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities.
文摘Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
基金The National Natural Science Foundation of China(No.61375076)the Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0108)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1423)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302064B)
文摘An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.