期刊文献+
共找到4,929篇文章
< 1 2 247 >
每页显示 20 50 100
When Does Sora Show:The Beginning of TAO to Imaginative Intelligence and Scenarios Engineering 被引量:14
1
作者 Fei-Yue Wang Qinghai Miao +6 位作者 Lingxi Li Qinghua Ni Xuan Li Juanjuan Li Lili Fan Yonglin Tian Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期809-815,共7页
DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in... DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning. 展开更多
关键词 SOMETHING INTELLIGENCE replace
下载PDF
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception 被引量:3
2
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor Tactile perception Multimodal machine learning algorithms Universal tactile system Intelligent object recognition
下载PDF
Colorectal cancer screening:A review of current knowledge and progress in research 被引量:3
3
作者 Sara Ramos Lopes Claudio Martins +3 位作者 Inês Costa Santos Madalena Teixeira Élia Gamito Ana Luisa Alves 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1119-1133,共15页
Colorectal cancer(CRC)is one of the most prevalent malignancies worldwide,being the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally.Despite the progress in scree... Colorectal cancer(CRC)is one of the most prevalent malignancies worldwide,being the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally.Despite the progress in screening,early diagnosis,and treatment,approximately 20%-25%of CRC patients still present with metastatic disease at the time of their initial diagnosis.Furthermore,the burden of disease is still expected to increase,especially in individuals younger than 50 years old,among whom early-onset CRC incidence has been increasing.Screening and early detection are pivotal to improve CRC-related outcomes.It is well established that CRC screening not only reduces incidence,but also decreases deaths from CRC.Diverse screening strategies have proven effective in decreasing both CRC incidence and mortality,though variations in efficacy have been reported across the literature.However,uncertainties persist regarding the optimal screening method,age intervals and periodicity.Moreover,adherence to CRC screening remains globally low.In recent years,emerging technologies,notably artificial intelligence,and non-invasive biomarkers,have been developed to overcome these barriers.However,controversy exists over the actual impact of some of the new discoveries on CRC-related outcomes and how to effectively integrate them into daily practice.In this review,we aim to cover the current evidence surrounding CRC screening.We will further critically assess novel approaches under investigation,in an effort to differentiate promising inno-vations from mere novelties. 展开更多
关键词 Colorectal cancer SCREENING REVIEW ONCOLOGY Artificial intelligence
下载PDF
人工智能加速GPCR配体的发现 被引量:2
4
作者 Wei Chen Chi Song +2 位作者 Liang Leng Sanyin Zhang Shilin Chen 《Engineering》 SCIE EI CAS CSCD 2024年第1期18-28,共11页
G protein-coupled receptors(GPCRs)are crucial players in various physiological processes,making them attractive candidates for drug discovery.However,traditional approaches to GPCR ligand discovery are time-consuming ... G protein-coupled receptors(GPCRs)are crucial players in various physiological processes,making them attractive candidates for drug discovery.However,traditional approaches to GPCR ligand discovery are time-consuming and resource-intensive.The emergence of artificial intelligence(AI)methods has revolutionized the field of GPCR ligand discovery and has provided valuable tools for accelerating the identification and optimization of GPCR ligands.In this study,we provide guidelines for effectively utilizing AI methods for GPCR ligand discovery,including data collation and representation,model selection,and specific applications.First,the online resources that are instrumental in GPCR ligand discovery were summarized,including databases and repositories that contain valuable GPCR-related information and ligand data.Next,GPCR and ligand representation schemes that can convert data into computer-readable formats were introduced.Subsequently,the key applications of AI methods in the different stages of GPCR drug discovery were discussed,ranging from GPCR function prediction to ligand design and agonist identification.Furthermore,an AI-driven multi-omics integration strategy for GPCR ligand discovery that combines information from various omics disciplines was proposed.Finally,the challenges and future directions of the application of AI in GPCR research were deliberated.In conclusion,continued advancements in AI techniques coupled with interdisciplina ry collaborations will offer great potential for improving the efficiency of GPCR ligand discovery. 展开更多
关键词 G protein-coupled receptor LIGAND Artificial intelligence Multi-omics Drug discovery
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:4
5
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
通智测试——基于动态具身物理社会交互环境的通用人工智能测试 被引量:1
6
作者 Yujia Peng Jiaheng Han +7 位作者 Zhenliang Zhang Lifeng Fan Tengyu Liu Siyuan Qi Xue Feng Yuxi Ma Yizhou Wang Song-Chun Zhu 《Engineering》 SCIE EI CAS CSCD 2024年第3期12-22,共11页
The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to defi... The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to define and evaluate AGI remain unclear.This perspective article proposes that the evaluation of AGI should be rooted in dynamic embodied physical and social interactions(DEPSI).More specifically,we propose five critical characteristics to be considered as AGI benchmarks and suggest the Tong test as an AGI evaluation system.The Tong test describes a value-and ability-oriented testing system that delineates five levels of AGI milestones through a virtual environment with DEPSI,allowing for infinite task generation.We contrast the Tong test with classical AI testing systems in terms of various aspects and propose a systematic evaluation system to promote standardized,quantitative,and objective benchmarks and evaluation of AGI. 展开更多
关键词 Artificial general intelligence Artificial intelligence benchmark Artificial intelligence evaluation Embodied artificial intelligence Value alignment Turing test CAUSALITY
下载PDF
Leveraging machine learning for early recurrence prediction in hepatocellular carcinoma:A step towards precision medicine 被引量:2
7
作者 Abhimati Ravikulan Kamran Rostami 《World Journal of Gastroenterology》 SCIE CAS 2024年第5期424-428,共5页
The high rate of early recurrence in hepatocellular carcinoma(HCC)post curative surgical intervention poses a substantial clinical hurdle,impacting patient outcomes and complicating postoperative management.The advent... The high rate of early recurrence in hepatocellular carcinoma(HCC)post curative surgical intervention poses a substantial clinical hurdle,impacting patient outcomes and complicating postoperative management.The advent of machine learning provides a unique opportunity to harness vast datasets,identifying subtle patterns and factors that elude conventional prognostic methods.Machine learning models,equipped with the ability to analyse intricate relationships within datasets,have shown promise in predicting outcomes in various medical disciplines.In the context of HCC,the application of machine learning to predict early recurrence holds potential for personalized postoperative care strategies.This editorial comments on the study carried out exploring the merits and efficacy of random survival forests(RSF)in identifying significant risk factors for recurrence,stratifying patients at low and high risk of HCC recurrence and comparing this to traditional COX proportional hazard models(CPH).In doing so,the study demonstrated that the RSF models are superior to traditional CPH models in predicting recurrence of HCC and represent a giant leap towards precision medicine. 展开更多
关键词 Machine learning Artificial intelligence Hepatocellular carcinoma HEPATOLOGY Early recurrence Liver resection
下载PDF
Mental health in the virtual world:Challenges and opportunities in the metaverse era 被引量:3
8
作者 Yolanda López del Hoyo Matilde Elices Javier Garcia-Campayo 《World Journal of Clinical Cases》 SCIE 2024年第17期2939-2945,共7页
Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementat... Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementation of novel mental health treatments using virtual reality,augmented reality,and artificial intelligence.A new three dimensional digital environment,known as the metaverse,has emerged as the next version of the Internet.Artificial intelligence,augmented reality,and virtual reality will create fully immersive,experiential,and interactive online environments in the metaverse.People will use a unique avatar to do anything they do in their“real”lives,including seeking and receiving mental health care.In this opinion review,we reflect on how the metaverse could reshape how we deliver mental health treatment,its opportunities,and its challenges. 展开更多
关键词 Metaverse Virtual world Artificial intelligence Mental health Virtual reality Augmented reality TECHNOLOGY
下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:2
9
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
下载PDF
May ChatGPT be a tool producing medical information for common inflammatory bowel disease patients’questions?An evidencecontrolled analysis 被引量:3
10
作者 Antonietta Gerarda Gravina Raffaele Pellegrino +6 位作者 Marina Cipullo Giovanna Palladino Giuseppe Imperio Andrea Ventura Salvatore Auletta Paola Ciamarra Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第1期17-33,共17页
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa... Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed. 展开更多
关键词 Crohn’s disease Ulcerative colitis Inflammatory bowel disease Chat Generative Pre-trained Transformer Large language model Artificial intelligence
下载PDF
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
11
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
A review of artificial intelligence applications in high-speed railway systems 被引量:2
12
作者 Xuehan Li Minghao Zhu +3 位作者 Boyang Zhang Xiaoxuan Wang Zha Liu Liang Han 《High-Speed Railway》 2024年第1期11-16,共6页
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e... In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions. 展开更多
关键词 High-speed railway Artificial intelligence Intelligent distribution Intelligent control Intelligent scheduling
下载PDF
The Journey/DAO/TAO of Embodied Intelligence: From Large Models to Foundation Intelligence and Parallel Intelligence 被引量:1
13
作者 Tianyu Shen Jinlin Sun +4 位作者 Shihan Kong Yutong Wang Juanjuan Li Xuan Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1313-1316,共4页
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos... THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5]. 展开更多
关键词 INTELLIGENCE DAO TAO
下载PDF
Automation 5.0: The Key to Systems Intelligence and Industry 5.0 被引量:1
14
作者 Ljubo Vlacic Hailong Huang +10 位作者 Mariagrazia Dotoli Yutong Wang Petros A.Ioannou Lili Fan Xingxia Wang Raffaele Carli Chen Lv Lingxi Li Xiaoxiang Na Qing-Long Han Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1723-1727,共5页
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f... AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024. 展开更多
关键词 AUTOMATION MACHINERY INTELLIGENCE
下载PDF
Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine 被引量:1
15
作者 Jingqi Zeng Xiaobin Jia 《Engineering》 SCIE EI CAS CSCD 2024年第9期28-50,共23页
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe... This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology. 展开更多
关键词 Artificial intelligence Systems theory Traditional Chinese medicine Material basis BOTTOM-UP
下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
16
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 Artificial intelligence Radiomics Feature extraction Feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
下载PDF
Integrating artificial intelligence and high-throughput phenotyping for crop improvement 被引量:1
17
作者 Mansoor Sheikh Farooq Iqra +3 位作者 Hamadani Ambreen Kumar A Pravin Manzoor Ikra Yong Suk Chung 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1787-1802,共16页
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev... Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI. 展开更多
关键词 artificial intelligence crop improvement data analysis high-throughput phenotyping machine learning precision agriculture trait selection
下载PDF
Machine learning for predicting the outcome of terminal ballistics events 被引量:1
18
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 Machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
下载PDF
Cooperative User-Scheduling and Resource Allocation Optimization for Intelligent Reflecting Surface Enhanced LEO Satellite Communication 被引量:1
19
作者 Meng Meng Bo Hu +1 位作者 Shanzhi Chen Jianyin Zhang 《China Communications》 SCIE CSCD 2024年第2期227-244,共18页
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate... Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput. 展开更多
关键词 convex optimization intelligent reflecting surface LEO satellite communication OFDM
下载PDF
2D multifunctional devices:from material preparation to device fabrication and neuromorphic applications 被引量:1
20
作者 Zhuohui Huang Yanran Li +3 位作者 Yi Zhang Jiewei Chen Jun He Jie Jiang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期91-118,共28页
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d... Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems. 展开更多
关键词 2D material micro–nano fabrication multifunctional system neuromorphic electronics artificial intelligence
下载PDF
上一页 1 2 247 下一页 到第
使用帮助 返回顶部