It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in b...It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in both the high-frequency(up to the x-ray)and low-frequency(mid-infrared)ranges.The efficiency of energy conversion into the wavelength range above 3μm can reach several percent,which makes it possible to obtain relativistically intense pulses in the mid-infrared range.These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges,which opens up opportunities for high-precision pump–probe measurements,in particular,laser-induced electron diffraction and transient absorption spectroscopy.展开更多
Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simul...Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simulations.A theoretical model is established to examine the dipole-like radiation emission.The THz radiation is attributed to the singlecycle low-frequency surface current,which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force.Through theoretical analysis,the spatiotemporal characteristics,polarization property of the THz radiation,and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained,which are in good consistence with the PIC simulation results.Furthermore,it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime,resulting in a clear THz radiation waveform.The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm,which could find potential applications in nonlinear THz physics.展开更多
The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The ca...The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The canonical angular momentum, Pe, defined under the conditions at the source, uniquely determines the possible solutions of these equations. By numerically solving these equations, the space-charge limited current and the externally applied magnetic field are obtained in a solid beam and a hollow beam in two cases of Pθ= 0 (magnetically shielded source) and Pθ= const. (immersed source) separately. It is shown that the hollow beam is more beneficial to the propagation of the intense relativistic beam through a drift tube than the solid beam.展开更多
Direct laser acceleration(DLA)of electrons in a plasma of near-critical electron density(NCD)and the associated synchrotron-like radiation are discussed for moderate relativistic laser intensity(normalized laser ampli...Direct laser acceleration(DLA)of electrons in a plasma of near-critical electron density(NCD)and the associated synchrotron-like radiation are discussed for moderate relativistic laser intensity(normalized laser amplitude a0≤4.3)and ps length pulse.This regime is typical of kJ PW-class laser facilities designed for high-energy-density(HED)research.In experiments at the PHELIX facility,it has been demonstrated that interaction of a 1019 W/cm2 sub-ps laser pulse with a sub-mm length NCD plasma results in the generation of high-current well-directed superponderomotive electrons with an effective temperature ten times higher than the ponderomotive potential[Rosmej et al.,Plasma Phys.Controlled Fusion 62,115024(2020)].Three-dimensional particle-in-cell simulations provide good agreement with the measured electron energy distribution and are used in the current work to study synchrotron radiation from the DLA-accelerated electrons.The resulting x-ray spectrum with a critical energy of 5 keV reveals an ultrahigh photon number of 731011 in the 1–30 keV photon energy range at the focused laser energy of 20 J.Numerical simulations of betatron x-ray phase contrast imaging based on the DLA process for the parameters of a PHELIX laser are presented.The results are of interest for applications in HED experiments,which require a ps x-ray pulse and a high photon flux.展开更多
Ultra-intense short-pulse light sources are powerful tools for a wide range of applications.However,relativistic short-pulse lasers are normally generated in the near-infrared regime.Here,we present a promising and ef...Ultra-intense short-pulse light sources are powerful tools for a wide range of applications.However,relativistic short-pulse lasers are normally generated in the near-infrared regime.Here,we present a promising and efficient way to generate tunable relativistic ultrashort pulses with wavelengths above 20μm in a density-tailored plasma.In this approach,in the first stage,an intense drive laser first excites a nonlinear wake in an underdense plasma,and its photon frequency is then downshifted via phase modulation as it propagates in the plasma wake.Subsequently,in the second stage,the drive pulse enters a lower-density plasma region so that the wake has a larger plasma cavity in which longer-wavelength infrared pulses can be produced.Numerical simulations show that the resulting near-single-cycle pulses cover a broad spectral range of 10–40μm with a conversion efficiency of∼2.1%(∼34 mJ pulse energy).This enables the investigation of nonlinear infrared optics in the relativistic regime and offers new possibilities for the investigation of ultrafast phenomena and physics in strong fields.展开更多
Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plas...Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plasma, with the advantage of no damage limit, is a promising medium to generate strong THz radiation. This review reports recent advances on strong THz radiation generation from low-density gases and high-density solid targets at different laser intensities.展开更多
With the advent of ultrashort high intensity laser pulses, laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applica...With the advent of ultrashort high intensity laser pulses, laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applications of high intensity lasers,including the hot electron production for fast ignition of fusion targets, table-top bright X-ray and gamma-ray sources,ion acceleration, compact neutron sources, and generally the creation of high energy density matters. Normally, some absorption mechanisms found for nanosecond long laser pulses also appear for ultrashort laser pulses. The peculiar aspects with ultrashort laser pulses are that their absorption depends significantly on the preplasma condition and the initial target structures. Meanwhile, relativistic nonlinearity and ponderomotive force associated with the laser pulses lead to new mechanisms or phenomena, which are usually not found with nanosecond long pulses. In this paper, we present an overview of the recent progress on the major absorption mechanisms in intense laser–solid interactions, where emphasis is paid to our related theory and simulation studies.展开更多
Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are in...Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included.The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF).The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength.The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.展开更多
Based on the relativistic hydrodynamic model of EM wave-spin plasmas interaction,the spin effects on the relativistic strong EM modes in magnetized plasma are investigated.The dispersion relations of the EM wave propa...Based on the relativistic hydrodynamic model of EM wave-spin plasmas interaction,the spin effects on the relativistic strong EM modes in magnetized plasma are investigated.The dispersion relations of the EM wave propagating parallel and perpendicular to the external magnetic field are obtained.Results show that the strong EM wave modes are affected by the time component of four-spin as well as the increase of electron effective mass.Especially in the case of EM wave propagating parallel to the external magnetic field,the time component of fourspin amplifies the influence of spin effects on the low-frequency modes obviously.展开更多
High-field experiments are very sensitive to the exact value of the peak intensity of an optical pulse due to the nonlinearity of the underlying processes.Therefore,precise knowledge of the pulse intensity,which is ma...High-field experiments are very sensitive to the exact value of the peak intensity of an optical pulse due to the nonlinearity of the underlying processes.Therefore,precise knowledge of the pulse intensity,which is mainly limited by the accuracy of the temporal characterization,is a key prerequisite for the correct interpretation of experimental data.While the detection of energy and spatial profile is well established,the unambiguous temporal characterization of intense optical pulses,another important parameter required for intensity evaluation,remains a challenge,especially at relativistic intensities and a few-cycle pulse duration.Here,we report on the progress in the temporal characterization of intense laser pulses and present the relativistic surface second harmonic generation dispersion scan(RSSHG-D-scan)—a new approach allowing direct on-target temporal characterization of high-energy,few-cycle optical pulses at relativistic intensity.展开更多
High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density...High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.展开更多
基金supported by the Ministry of Science and Higher Education of the Russian Federation,state assignment for the Lobachevsky University of Nizhny Novgorod,Project No.0729-2020-0035state assignment for the Institute of Applied Physics RAS,Project No.0030-2021-0012.
文摘It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in both the high-frequency(up to the x-ray)and low-frequency(mid-infrared)ranges.The efficiency of energy conversion into the wavelength range above 3μm can reach several percent,which makes it possible to obtain relativistically intense pulses in the mid-infrared range.These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges,which opens up opportunities for high-precision pump–probe measurements,in particular,laser-induced electron diffraction and transient absorption spectroscopy.
基金the National Natural Science Foundation of China(Grant Nos.11774430,12075157,11775202,and 12175310)the Scientific Research Foundation of Hunan Provincial Education Department(Grant No.20A042).
文摘Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simulations.A theoretical model is established to examine the dipole-like radiation emission.The THz radiation is attributed to the singlecycle low-frequency surface current,which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force.Through theoretical analysis,the spatiotemporal characteristics,polarization property of the THz radiation,and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained,which are in good consistence with the PIC simulation results.Furthermore,it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime,resulting in a clear THz radiation waveform.The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm,which could find potential applications in nonlinear THz physics.
基金Project supported by the National Natural Science Foundation of China (Grant No 10476004).
文摘The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The canonical angular momentum, Pe, defined under the conditions at the source, uniquely determines the possible solutions of these equations. By numerically solving these equations, the space-charge limited current and the externally applied magnetic field are obtained in a solid beam and a hollow beam in two cases of Pθ= 0 (magnetically shielded source) and Pθ= const. (immersed source) separately. It is shown that the hollow beam is more beneficial to the propagation of the intense relativistic beam through a drift tube than the solid beam.
基金the DFG(Project No.PU 213/9),EPSRC Grant No.EP/P026796/1the Ministry of Science and Higher Education of the Russian Federation(Agreement with Joint Institute for High Temperatures RAS No 075-15-2020-785,dated September 23,2020).
文摘Direct laser acceleration(DLA)of electrons in a plasma of near-critical electron density(NCD)and the associated synchrotron-like radiation are discussed for moderate relativistic laser intensity(normalized laser amplitude a0≤4.3)and ps length pulse.This regime is typical of kJ PW-class laser facilities designed for high-energy-density(HED)research.In experiments at the PHELIX facility,it has been demonstrated that interaction of a 1019 W/cm2 sub-ps laser pulse with a sub-mm length NCD plasma results in the generation of high-current well-directed superponderomotive electrons with an effective temperature ten times higher than the ponderomotive potential[Rosmej et al.,Plasma Phys.Controlled Fusion 62,115024(2020)].Three-dimensional particle-in-cell simulations provide good agreement with the measured electron energy distribution and are used in the current work to study synchrotron radiation from the DLA-accelerated electrons.The resulting x-ray spectrum with a critical energy of 5 keV reveals an ultrahigh photon number of 731011 in the 1–30 keV photon energy range at the focused laser energy of 20 J.Numerical simulations of betatron x-ray phase contrast imaging based on the DLA process for the parameters of a PHELIX laser are presented.The results are of interest for applications in HED experiments,which require a ps x-ray pulse and a high photon flux.
基金supported by the National Natural Science Foundation of China(Grant Nos.11991074,11775144,and 11975154)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100)+2 种基金a Grant from the Office of Science and Technology,Shanghai Municipal Government(Grant No.18JC1410700)the Science Challenge Project(Grant No.TZ2018005)The development of the EPOCH code is supported in part by the UK EPSRC(Grant No.EP/G056803/1).
文摘Ultra-intense short-pulse light sources are powerful tools for a wide range of applications.However,relativistic short-pulse lasers are normally generated in the near-infrared regime.Here,we present a promising and efficient way to generate tunable relativistic ultrashort pulses with wavelengths above 20μm in a density-tailored plasma.In this approach,in the first stage,an intense drive laser first excites a nonlinear wake in an underdense plasma,and its photon frequency is then downshifted via phase modulation as it propagates in the plasma wake.Subsequently,in the second stage,the drive pulse enters a lower-density plasma region so that the wake has a larger plasma cavity in which longer-wavelength infrared pulses can be produced.Numerical simulations show that the resulting near-single-cycle pulses cover a broad spectral range of 10–40μm with a conversion efficiency of∼2.1%(∼34 mJ pulse energy).This enables the investigation of nonlinear infrared optics in the relativistic regime and offers new possibilities for the investigation of ultrafast phenomena and physics in strong fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10925421,11135012,11105217, and 11121504)
文摘Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plasma, with the advantage of no damage limit, is a promising medium to generate strong THz radiation. This review reports recent advances on strong THz radiation generation from low-density gases and high-density solid targets at different laser intensities.
基金Project supported by the National Basic Research Program of China(Grant No.2013CBA01504)the National Natural Science Foundation of China(Grant Nos.11421064,11129503,11374209,and 11374210)
文摘With the advent of ultrashort high intensity laser pulses, laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applications of high intensity lasers,including the hot electron production for fast ignition of fusion targets, table-top bright X-ray and gamma-ray sources,ion acceleration, compact neutron sources, and generally the creation of high energy density matters. Normally, some absorption mechanisms found for nanosecond long laser pulses also appear for ultrashort laser pulses. The peculiar aspects with ultrashort laser pulses are that their absorption depends significantly on the preplasma condition and the initial target structures. Meanwhile, relativistic nonlinearity and ponderomotive force associated with the laser pulses lead to new mechanisms or phenomena, which are usually not found with nanosecond long pulses. In this paper, we present an overview of the recent progress on the major absorption mechanisms in intense laser–solid interactions, where emphasis is paid to our related theory and simulation studies.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11047152,11147005,and 11178002the Natural Science Foundation of Jiangxi Province under Grant Nos.2010GQW0048 and 20122BAB202003
文摘Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included.The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF).The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength.The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.
基金supported by the National Natural Science Foundation of China under Grant No.12065011the PhD Starting Fund program of TongRen University under Grant No.trxyDH2223
文摘Based on the relativistic hydrodynamic model of EM wave-spin plasmas interaction,the spin effects on the relativistic strong EM modes in magnetized plasma are investigated.The dispersion relations of the EM wave propagating parallel and perpendicular to the external magnetic field are obtained.Results show that the strong EM wave modes are affected by the time component of four-spin as well as the increase of electron effective mass.Especially in the case of EM wave propagating parallel to the external magnetic field,the time component of fourspin amplifies the influence of spin effects on the low-frequency modes obviously.
基金supported by DFG through the Cluster of Excellence“Munich Center for Advanced Photonics”(MAP)(EXC 158)and TR-18 funding schemesthe Euratom research and training program 2014-2018 under Grant agreement No.633053 within the framework of the EUROfusion Consortium“International Max-Planck Research School of Advanced Photon Science”(IMPRS-APS),and the Max-Planck Society.
文摘High-field experiments are very sensitive to the exact value of the peak intensity of an optical pulse due to the nonlinearity of the underlying processes.Therefore,precise knowledge of the pulse intensity,which is mainly limited by the accuracy of the temporal characterization,is a key prerequisite for the correct interpretation of experimental data.While the detection of energy and spatial profile is well established,the unambiguous temporal characterization of intense optical pulses,another important parameter required for intensity evaluation,remains a challenge,especially at relativistic intensities and a few-cycle pulse duration.Here,we report on the progress in the temporal characterization of intense laser pulses and present the relativistic surface second harmonic generation dispersion scan(RSSHG-D-scan)—a new approach allowing direct on-target temporal characterization of high-energy,few-cycle optical pulses at relativistic intensity.
文摘High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.