Underground railway vibration source strength is one of the key values used for environmental impact assessment and the evaluation of mitigation measure’s performance.However,currently there is no international stand...Underground railway vibration source strength is one of the key values used for environmental impact assessment and the evaluation of mitigation measure’s performance.However,currently there is no international standard of measuring the underground railway vibration source strength for such purposes.The available local standards and industrial guidelines do not agree on measurement locations as well as the metrics for presenting the source strength.This has caused many confusions.This paper aims to study the suitable measurement location and metrics using the data from a large scale field-testing carried out at the Nanchang underground railway(Metro Line 1,China)in 2017.200 passing trains were recorded during the test at two different sections of the railway line,one with the spring floating slab installed and the other without.Three locations were chosen at each section,including one in the middle of the track and two on the tunnel wall at different heights.Based on the results of statistical analysis,the maximum of z-weighted vertical vibration level(VLzmax)obtained at a lower measurement location on the tunnel wall is the best for representing the underground railway vibration source strength,which is 76.66 dB obtained from this study.展开更多
Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as...Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel.展开更多
基金The authors are very grateful for the financial support received from the National Natural Science Foundation of China(Grant Nos.51668020,51878277,51478184).
文摘Underground railway vibration source strength is one of the key values used for environmental impact assessment and the evaluation of mitigation measure’s performance.However,currently there is no international standard of measuring the underground railway vibration source strength for such purposes.The available local standards and industrial guidelines do not agree on measurement locations as well as the metrics for presenting the source strength.This has caused many confusions.This paper aims to study the suitable measurement location and metrics using the data from a large scale field-testing carried out at the Nanchang underground railway(Metro Line 1,China)in 2017.200 passing trains were recorded during the test at two different sections of the railway line,one with the spring floating slab installed and the other without.Three locations were chosen at each section,including one in the middle of the track and two on the tunnel wall at different heights.Based on the results of statistical analysis,the maximum of z-weighted vertical vibration level(VLzmax)obtained at a lower measurement location on the tunnel wall is the best for representing the underground railway vibration source strength,which is 76.66 dB obtained from this study.
文摘Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel.