In view of information geometry,the state space S of thermodynamic parameters is investigated.First a Riemannian metric for S is defined and then the α-geometric structures of S is given.Some of results obtained by o...In view of information geometry,the state space S of thermodynamic parameters is investigated.First a Riemannian metric for S is defined and then the α-geometric structures of S is given.Some of results obtained by other authors are extended.展开更多
Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded ...Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.展开更多
Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure...Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure of semidirect product, and Hamiltonian is derived from Jacobi's integral. The above method can be generalized to establish the Hamiltonian structure of a rigid body with a flexible attachment in a circular or- bit. At last, an example of stability analysis is given.展开更多
This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe sup...This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.展开更多
As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudo...As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudostructure on which conservation laws are fulfilled (A closed dual form describes a pseudostructure. And a closed exterior form, as it is known, describes a conservative quantity, since the differential of closed form is equal to zero). It has been shown that closed inexact exterior forms, which describe physical structures, are obtained from the equations of mathematical physics. This process proceeds spontaneously under realization of any degrees of freedom of the material medium described. Such a process describes an emergence of physical structures and this is accompanied by an appearance of observed formations such as fluctuations, waves, turbulent pulsations and so on.展开更多
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa...Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.展开更多
Proves that cosymplectic hypersurfaces of six dimensional Hermitian submanifolds of the octave algebra are ruled manifolds and establishes a necessary and sufficient condition for a cosymplectic hypersurface of Hermit...Proves that cosymplectic hypersurfaces of six dimensional Hermitian submanifolds of the octave algebra are ruled manifolds and establishes a necessary and sufficient condition for a cosymplectic hypersurface of Hermitian M 6 O to be a minimal submanifold of M 6.展开更多
Tubular neighborhoods play an important role in differential topology. We have applied these constructions to geometry of almost Hermitian manifolds. At first, we consider deformations of tensor structures on a normal...Tubular neighborhoods play an important role in differential topology. We have applied these constructions to geometry of almost Hermitian manifolds. At first, we consider deformations of tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold. Further, an almost hyper Hermitian structure has been constructed on the tangent bundle TM with help of the Riemannian connection of an almost Hermitian structure on a manifold M then, we consider an embedding of the almost Hermitian manifold M in the corresponding normal tubular neighborhood of the null section in the tangent bundle TM equipped with the deformed almost hyper Hermitian structure of the special form. As a result, we have obtained that any Riemannian manifold M of dimension n can be embedded as a totally geodesic submanifold in a Kaehlerian manifold of dimension 2n (Theorem 6) and in a hyper Kaehlerian manifold of dimension 4n (Theorem 7). Such embeddings are “good” from the point of view of Riemannian geometry. They allow solving problems of Riemannian geometry by methods of Kaehlerian geometry (see Section 5 as an example). We can find similar situation in mathematical analysis (real and complex).展开更多
In this article,we give a survey of some progress of the complex geometry,mostly related to the Lie group actions on compact complex manifolds and complex homogeneous spaces in the last thirty years.In particular,we e...In this article,we give a survey of some progress of the complex geometry,mostly related to the Lie group actions on compact complex manifolds and complex homogeneous spaces in the last thirty years.In particular,we explore some works in the special area in Di erential Geometry,Lie Group and Complex Homogeneous Space.Together with the special area in nonlinear analysis on complex manifolds,they are the two major aspects of my research interests.展开更多
In this paper, the vertical and horizontal distributions of an invariant sub-manifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finall...In this paper, the vertical and horizontal distributions of an invariant sub-manifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finally, necessary and sufficient conditions are given on an invariant submanifold of a Riemannian product manifold to be a locally symmetric and real space form.展开更多
Six-dimensional Hermitian submanifolds of Cayley algebra are considered.It is proved that if such a submanifold of the octave algebta complies with the U-Kenmotsu hypersurfaces axiom,then it is Khlerian.
In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploit...In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturally gives relative importance to the labeled ones through a graph-based methodology. Then it tries to extract discriminative features on each manifold such that the data points in the same manifold become closer. The effectiveness of the proposed multi-manifold learning algorithm is demonstrated and compared through experiments on a real hyperspectral images.展开更多
Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain d...Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them.These factors often result in poor generalization in existing meta-learning models.In this work,a novel smoother manifold for graph meta-learning(SGML)is proposed,which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure,and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module.Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global.Besides suiting for generalizing on unseen low data issues,the framework is capable to easily perform transductive inference.Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation.展开更多
基金Sponsored by the National Natural Science Foundation of China(10871218,10932002)
文摘In view of information geometry,the state space S of thermodynamic parameters is investigated.First a Riemannian metric for S is defined and then the α-geometric structures of S is given.Some of results obtained by other authors are extended.
文摘Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.
基金The projeet supported by National Natural Science Foundation of China and Aeronautic Science Foundation.
文摘Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure of semidirect product, and Hamiltonian is derived from Jacobi's integral. The above method can be generalized to establish the Hamiltonian structure of a rigid body with a flexible attachment in a circular or- bit. At last, an example of stability analysis is given.
文摘This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.
文摘As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudostructure on which conservation laws are fulfilled (A closed dual form describes a pseudostructure. And a closed exterior form, as it is known, describes a conservative quantity, since the differential of closed form is equal to zero). It has been shown that closed inexact exterior forms, which describe physical structures, are obtained from the equations of mathematical physics. This process proceeds spontaneously under realization of any degrees of freedom of the material medium described. Such a process describes an emergence of physical structures and this is accompanied by an appearance of observed formations such as fluctuations, waves, turbulent pulsations and so on.
基金the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.
文摘Proves that cosymplectic hypersurfaces of six dimensional Hermitian submanifolds of the octave algebra are ruled manifolds and establishes a necessary and sufficient condition for a cosymplectic hypersurface of Hermitian M 6 O to be a minimal submanifold of M 6.
文摘Tubular neighborhoods play an important role in differential topology. We have applied these constructions to geometry of almost Hermitian manifolds. At first, we consider deformations of tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold. Further, an almost hyper Hermitian structure has been constructed on the tangent bundle TM with help of the Riemannian connection of an almost Hermitian structure on a manifold M then, we consider an embedding of the almost Hermitian manifold M in the corresponding normal tubular neighborhood of the null section in the tangent bundle TM equipped with the deformed almost hyper Hermitian structure of the special form. As a result, we have obtained that any Riemannian manifold M of dimension n can be embedded as a totally geodesic submanifold in a Kaehlerian manifold of dimension 2n (Theorem 6) and in a hyper Kaehlerian manifold of dimension 4n (Theorem 7). Such embeddings are “good” from the point of view of Riemannian geometry. They allow solving problems of Riemannian geometry by methods of Kaehlerian geometry (see Section 5 as an example). We can find similar situation in mathematical analysis (real and complex).
基金the Natural Science Foundation of Henan University。
文摘In this article,we give a survey of some progress of the complex geometry,mostly related to the Lie group actions on compact complex manifolds and complex homogeneous spaces in the last thirty years.In particular,we explore some works in the special area in Di erential Geometry,Lie Group and Complex Homogeneous Space.Together with the special area in nonlinear analysis on complex manifolds,they are the two major aspects of my research interests.
文摘In this paper, the vertical and horizontal distributions of an invariant sub-manifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finally, necessary and sufficient conditions are given on an invariant submanifold of a Riemannian product manifold to be a locally symmetric and real space form.
文摘Six-dimensional Hermitian submanifolds of Cayley algebra are considered.It is proved that if such a submanifold of the octave algebta complies with the U-Kenmotsu hypersurfaces axiom,then it is Khlerian.
文摘In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturally gives relative importance to the labeled ones through a graph-based methodology. Then it tries to extract discriminative features on each manifold such that the data points in the same manifold become closer. The effectiveness of the proposed multi-manifold learning algorithm is demonstrated and compared through experiments on a real hyperspectral images.
基金Supported by the National Natural Science Foundation of China(No.61171131)the Key R&D Program of Shandong Province(No.YD01033)the China Scholarship Council Project(No.021608370049).
文摘Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them.These factors often result in poor generalization in existing meta-learning models.In this work,a novel smoother manifold for graph meta-learning(SGML)is proposed,which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure,and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module.Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global.Besides suiting for generalizing on unseen low data issues,the framework is capable to easily perform transductive inference.Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation.