With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated fro...With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated from HRIs by several methods.As the target features obtained from the image are unstable,it is difficult to use existing methods for pose estimation.In this paper a method based on real-time target model matching to estimate the pose of space targets is proposed.First,the physicallyconstrained iterative deconvolution algorithm is used to obtain HRIs of the space target.Second,according to the 3D model,the ephemeris data,the observation time of the target,and the optical parameters of the telescope,the simulated observation image of the target in orbit is rendered by a scene simulation program.Finally,the target model searches through yaw,pitch,and roll until the correlation between the simulated observation image and the actual observation image shows an optimal match.The simulation results show that the proposed pose estimation method can converge to the local optimal value with an estimation error of about 1.6349°.展开更多
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv...Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level.展开更多
Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP with...Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP without scatterer Moving Through Range Cell (MTRC). However, template database based on this assumption is always challenged by measured data. One reason is that speckle happens in the frame without scatterer MTRC. Speckle makes HRRP fluctuate sharply and not match well with the average HRRP. We precisely introduce the formation mechanism of speckle. Then, we make an insight into the principle of matching score. Based on the conclusion, we study the properties of matching score between speckled HRRP and the average HRRP. The theoretical analysis and Monte Carlo experimental results demonstrate that speckle makes HRRP not to match well with the average HRRP according to the energy ratio of speckled scatterers. On the assumption of ideal scattering centre model, speckled HRRP has a matching score less than 85% with the average HRRP if speckled scatterers occupy more than 50% energy of the target.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
文摘With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated from HRIs by several methods.As the target features obtained from the image are unstable,it is difficult to use existing methods for pose estimation.In this paper a method based on real-time target model matching to estimate the pose of space targets is proposed.First,the physicallyconstrained iterative deconvolution algorithm is used to obtain HRIs of the space target.Second,according to the 3D model,the ephemeris data,the observation time of the target,and the optical parameters of the telescope,the simulated observation image of the target in orbit is rendered by a scene simulation program.Finally,the target model searches through yaw,pitch,and roll until the correlation between the simulated observation image and the actual observation image shows an optimal match.The simulation results show that the proposed pose estimation method can converge to the local optimal value with an estimation error of about 1.6349°.
文摘Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level.
文摘Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP without scatterer Moving Through Range Cell (MTRC). However, template database based on this assumption is always challenged by measured data. One reason is that speckle happens in the frame without scatterer MTRC. Speckle makes HRRP fluctuate sharply and not match well with the average HRRP. We precisely introduce the formation mechanism of speckle. Then, we make an insight into the principle of matching score. Based on the conclusion, we study the properties of matching score between speckled HRRP and the average HRRP. The theoretical analysis and Monte Carlo experimental results demonstrate that speckle makes HRRP not to match well with the average HRRP according to the energy ratio of speckled scatterers. On the assumption of ideal scattering centre model, speckled HRRP has a matching score less than 85% with the average HRRP if speckled scatterers occupy more than 50% energy of the target.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
文摘为了提高小目标识别和分类的实时性,同时降低识别系统的资源消耗,本文提出了一种简易、高效的现场可编程门阵列(Field Programmable Gate Array,FPGA)小目标识别分类系统。该系统首先通过图像预处理消除图像噪点,并采用并行计算提升系统实时性。然后将处理后的图像与模板进行匹配计算得到识别结果,设计的模板匹配电路具有较小的硬件复杂度和较快的处理速度。实验结果表明,本文所提出的识别系统在680×480图像分辨下,可达137.5帧/s的处理速度,实时性强,同时仅消耗了9个块随机存储器(Block Random Access Memory,BRAM)和2个数字信号处理器(Digital Signal Processor,DSP),硬件资源消耗较少,在处理小目标识别和分类问题上有较好的实用价值。