Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementi...Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.展开更多
Chest wall reconstruction is a surgical procedure aimed at restoring the integrity and function of the chest wall, which may be damaged due to trauma, cancer, infection, or congenital defects. The chest wall plays a v...Chest wall reconstruction is a surgical procedure aimed at restoring the integrity and function of the chest wall, which may be damaged due to trauma, cancer, infection, or congenital defects. The chest wall plays a vital role in protecting the thoracic organs, supporting the respiratory system, and maintaining the shape of the chest. Therefore, any defect or deformity of the chest wall can have significant functional and aesthetic consequences for the patient. The authors present a case report at Kenyatta National Hospital (KNH) of a dyspneic 47-year-old male patient with a right anterolateral chest wall defect post-pneumonectomy previously complicated by bronchopleural fistula. Past attempts at the chest wall reconstruction had utilized the ipsilateral latissimus dorsi muscle, pectoralis major muscle, and the omental pedicled flaps with limited success. A chimeric anterolateral thigh (ALT) perforator-free flap with vastus lateralis (VL) muscle was used to obliterate the post-pneumonectomy intrathoracic dead space and to provide a cutaneous paddle. This case report aims to show the versatility of the ALT flap for chest wall reconstruction to prevent the post-pneumonectomy syndrome associated with tracheal deviation, inspiratory stridor, and exertional dyspnea. In conclusion, chest wall reconstruction with obliteration of intrathoracic dead space post-pneumonectomy is challenging and needs careful planning and execution.展开更多
BACKGROUND Post-transplant lymphoproliferative disorder(PTLD)is a rare but highly fatal complication occurring after allogeneic hematopoietic cell transplantation(allo-HCT)or solid organ transplantation(SOT).Unlike SO...BACKGROUND Post-transplant lymphoproliferative disorder(PTLD)is a rare but highly fatal complication occurring after allogeneic hematopoietic cell transplantation(allo-HCT)or solid organ transplantation(SOT).Unlike SOT,PTLD after allo-HCT usually originates from the donor and is rarely accompanied by a loss of donor chimerism.CASE SUMMARY We report a case of Epstein-Barr virus positive PTLD manifesting as diffuse large B-cell lymphoma(DLBCL)with significantly decreased T-cell chimerism early after allo-HCT.A 30-year-old patient with acute myeloid leukemia underwent unrelated allo-HCT after first complete remission.Nearly 3 mo after transplantation,the patient developed cervical lymph node enlargement and gastric lesions,both of which were pathologically suggestive of DLBCL.Meanwhile,the patient experienced a significant and persistent decrease in T-cell chimerism.A partial remission was achieved after chemotherapy with single agent rituximab and subsequent R-CHOP combined chemotherapy.CONCLUSION The loss of T-cell chimerism and the concomitant T-cell insufficiency may be the cause of PTLD in this patient.展开更多
A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression c...A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression cassettes for the Bt29K and API-B genes was constructed. These two insect-resistant genes were transferred into two cotton ( Gossypium hirsutum L.) varieties ( or lines) via Agrobacterium-mediated transformation and nine homozygous transgenic cotton lines showing a mortality of 90.0% - 99.7% to cotton ballworm (Heliothis armigera) larvae and good agronomic traits were selected through six generations. Molecular biology analysis revealed that one or two copies of the insecticidal protein genes were integrated into the transgenic cotton genome and activated Cry1Ac and API-B protein expression was at a level of 0.17% and 0.09% of the total soluble protein in the transgenic cotton leaves, respectively. Comparison of the insect-resistance of the homozygous lines expressing the activated chimeric Cry1Ac and API-B with that expressing Cry1Ac only revealed that the insect-resistance of the former is apparently higher than the latter. These results also indicate that the strategy to construct a plant expression vector expressing two different insect-resistant genes reported here is reasonable.展开更多
Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321...Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.展开更多
Background: Chimeric antigen receptor-engineered T-cell(CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hemat...Background: Chimeric antigen receptor-engineered T-cell(CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hematological malignancies, its application has been explored in the treatment of solid tumors, such as liver cancer. In this review, we discuss the immune characteristics of liver cancer, the obstacles encountered during the application of CAR-T therapy, and preclinical and clinical progress in the use of CAR-T therapy in patients with liver cancer.Data sources: The data on CAR-T therapy related to liver cancers were collected by searching Pub Med and the Web of Science databases prior to December 2017 with the keywords "chimeric antigen receptor","CAR-T", "liver cancer", "hepatocellular carcinoma", and "solid tumor". Additional articles were identified by manual search of references found in the primary articles. The data for clinical trials were collected by searching Clinical Trials.gov.Results: The liver has a tolerogenic nature in the intrahepatic milieu and its tumor microenvironment significantly affects tumor progression. The obstacles that reduce the efficacy of CAR-T therapy in solid tumors include a lack of specific tumor antigens, limited trafficking and penetration of CAR-T cells to tumor sites, and an immunosuppressive tumor microenvironment. To overcome these obstacles, several strategies have emerged. In addition, several strategies have been developed to manage the side effects of CAR-T, including enhancing the selectivity of CARs and controlling CAR-T activity. To date, no clinical trials of CAR-T therapy against HCC have been completed. However, preclinical studies in vitro and in vivo have shown potent antitumor efficacy. Glypican-3, mucin-1, epithelial cell adhesion molecule, carcinoembryonic antigen, and other targets are currently being studied.Conclusions: The application of CAR-T therapy for liver cancer is just beginning to be explored and more research is needed. However, we are optimistic that CAR-T therapy will offer a new approach for the treatment of liver cancers in the future.展开更多
T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus(EBV) associated malignancies.The EBV latent membrane protein 1(LMP1) is a 66-KD integral membrane protein enco...T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus(EBV) associated malignancies.The EBV latent membrane protein 1(LMP1) is a 66-KD integral membrane protein encoded by EBV that consists of transmembrane-spanning loops.Previously,we have identified a functional signal chain variable fragment(scFv) that specifically recognizes LMP1 through phage library screening.Here,we constructed a LMP1 specific chimeric antigen receptor containing anti-LMP1 scFv,the CD28 signalling domain,and the CD3ζchain(HELA/CAR).We tested its functional ability to target LMP1 positive nasopharyngeal carcinoma cells.HELA/CAR cells were efficiently generated using lentivirus vector encoding the LMP1-specific chimeric antigen receptor to infect activated human CD3+ T cells.The HELA/CAR T cells displayed LMP1 specific cytolytic action and produced IFN-γ and IL-2 in response to nasopharyngeal carcinoma cells overexpressing LMP1.To demonstrate in vivo anti-tumor activity,we tested the HELA/CAR T cells in a xenograft model using an LMP1 overexpressing tumor.Intratumoral injection of anti-LMP1 HELA/CAR-T cells significantly reduced tumor growth in vivo.These results show that targeting LMP1 using HELA/CAR cells could represent an alternative therapeutic approach for patients with EBV-positive cancers.展开更多
Objective: This study was designed to determine the safety, pharmacokinetics and biologic effects of a humanmouse chimeric anti-CD20 monoclonal antibody (SCT400) in Chinese padents with CD20-positive B-cell non- Ho...Objective: This study was designed to determine the safety, pharmacokinetics and biologic effects of a humanmouse chimeric anti-CD20 monoclonal antibody (SCT400) in Chinese padents with CD20-positive B-cell non- Hodgkin's lymphoma (CD20 B-cell NHL). SCT400 has an identical amino acid sequence as rituximab, with the exception of one amino acid in the CH1 domain of the heavy chain, which is common in Asians. Methods: Fifteen patients with CD20+ B-cell NHL received dose-escalating SCT400 infusions (250 mg/m2: n=3; 375 mg/m2: n=9; 500 mg/m2: n=3) once weekly for 4 consecutive weeks with a 24-week follow-up period. The data of all patients were collected for pharmacoklnetics and pharmacodynamics analyses. Results: No dose-limiting toxicities were observed. Most drug-related adverse events were grade 1 or 2. Two patients had grade 3 or 4 ncutropenia. Under premedication, the drug-related infusion reaction was mild. A rapid, profound and durable depletion of circulating B cells was observed in all dose groups without significant effects on T cell count, natural killer (NK) cell count or immunoglobulin levels. No patient developed anti- SCT400 antibodies during the course of the study. SCT400 serum half-life (Tin), maximum concentration (Cmax and area under the curve (AUC) generally increased between the first and fourth infusions (P〈0.05). At the 375 mg/m2 dose, the T1/2 was 122.5±46.7 h vs. 197.0,75.0 11, respectively, and the Cmax was 200.6±20.2 pg/mL vs. 339.1±71.0 ng/mL, respectively. From 250 mg/m2 to 500 mg/m2, the Cmax and AUC increased significantly in a dose-dependent manner (P〈0.05). Patients with a high tumor burden had markedly lower serum SCT400 concenmations compared with those without or with a low tumor burden. Of the 9 assessable patients, 1 achieved complete response and 2 achieved partial responses. Conclusions; SCT400 is well-tolerated and has encouraging preliminary efficacy in Chinese patients with CD20+ B-cell NHL.展开更多
AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liverhumanized mice.METHODS We crossed three mouse strains,including albumin(Alb)-cre transgenic mice,inducible diphthe...AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liverhumanized mice.METHODS We crossed three mouse strains,including albumin(Alb)-cre transgenic mice,inducible diphtheria toxin receptor(DTR) transgenic mice and severe combined immune deficient(SCID)-beige mice,to create Alb-cre/DTR/SCID-beige(ADSB) mice,which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb(encoding ALB),the DTR stop signal flanked by two lox P sites can be deleted in the ADSB mice,resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally(i.p.) with diphtheria toxin(DT) and liver damage was assessed by serum alanine aminotransferase(ALT) level. Two days later,mouse livers were sampled for histological analysis,and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7,14,21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation.RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2,increased on day 7,and was lowest on day 4(range,10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/m L on day 4,then returned to background values on day 7. After transplantation of human liver cells,peripheral blood human ALB level was 1580 ± 454.8 ng/m L(range,750.2-3064.9 ng/m L) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice.CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications,such as hepatocyte transplantation,hepatic regeneration and drug metabolism.展开更多
AIM: To investigate the c-kit expression in biliary tract cancer cell lines and histological sections from patients with extrahepatic cholangiocarcinoma (CC) and to evaluate the efficacy of in vitro and in vitro tr...AIM: To investigate the c-kit expression in biliary tract cancer cell lines and histological sections from patients with extrahepatic cholangiocarcinoma (CC) and to evaluate the efficacy of in vitro and in vitro treatment with imatinib mesilate. METHODS: The protein expression of c-kit in the human biliary tract cancer cell lines Mz-ChA-2 and EGI-1 and histological sections from 19 patients with extrahepatic CC was assessed by immunoblotting, immunocytochemistry, and immunohistochemistry. The anti-proliferative effect of imatinib mesilate on biliary tract cancer cell lines Mz-ChA-2 and EGI-1 was studied in vitro by automated cell counting. In addition, immunodeficient NMRI mice (Taconic^TM) were subcutaneously injected with 5 × 10^6 cells of cell lines MzChA-2 and EGI-1. After having reached a tumour volume of 200 mm^3, daily treatment was started intraperitoneally with imatinib mesilate at a dose of 50 mgikg or normal saline (NS). Tumor volume was calculated with a Vernier caliper. After 14 d, mice were sacrificed with tumors excised and tumor mass determined.RESULTS: Immunoblotting revealed presence of c-kit in Mz-ChA-2 and absence in EGI-1 cells. Immunocytochemistry with c-kit antibodies displayed a cytoplasmatic and membraneous localization of receptor protein in Mz-ChA-2 cells and absence of c-kit in EGI-1 cells, c-kit was expressed in 7 of 19 (37%) extrahepatic humanCC tissue samples, 2 showed a moderate and 5 a rather weak immunostaining. Imatinib mesilate at a low concentration of 5 μmoliL caused a significant growth inhibition in the c-kit positive cell line Mz-ChA-2 (31%), but not in the c-kit negative cell line EGI-1 (0%) (P〈0.05). Imatinib mesilate at an intermediate concentration of 10 μmoliL inhibited cellular growth of both cell lines (51% vs 57%). Imatinib mesilate at a higher concentration of 20 μmoliL seemed to have a general toxic effect on both cell lines. The IC50 values were 9.7 μmoliL and 11 μmoliL, respectively. After 14 d of in vitro treatment with imatinib mesilate, using the chimeric mouse model, c-kit positive Mz-ChA-2 tumors had a significantly reduced volume and mass as compared to NS treatment (P〈 0.05). In contrast to that, treatment of mice bearing c-kit negative EGI-1 tumors did not result in any change of tumor volume and mass as compared to NS treatment. CONCLUSION: c-kit expression is detectable at a moderate to low protein level in biliary tract cancer. Imatinib mesilate exerts marked effects on tumor growth in vitro andin vitro dependent on the level of c-kit expression.展开更多
Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic ...Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90's, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.展开更多
Cytokine release syndrome(CRS)is a major obstacle to the widespread clinical application of chimeric antigen receptor(CAR)T cell therapies.CRS can also be induced by infections(such as SARS-CoV-2),drugs(such as therap...Cytokine release syndrome(CRS)is a major obstacle to the widespread clinical application of chimeric antigen receptor(CAR)T cell therapies.CRS can also be induced by infections(such as SARS-CoV-2),drugs(such as therapeutic antibodies),and some autoimmune diseases.Myeloid-derived macrophages play key roles in the pathogenesis of CRS,and participate in the production and release of the core CRS cytokines,including interleukin(IL)-1,IL-6,and interferon-γ.In this review,we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.展开更多
c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma(HCC).Therefore,c-Met may serve as a promising target for HCC immunotherapy.Modifying T cells to express c-Met-...c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma(HCC).Therefore,c-Met may serve as a promising target for HCC immunotherapy.Modifying T cells to express c-Met-specific chimeric antigen receptor(CAR)is an attractive strategy in treating c-Met-positive HCC.This study aimed to systematically evaluate the inhibitory effects of 2^(nd)-and 3^(rd)-generation c-Met CAR-T cells on hepatocellular carcinoma(HCC)cells.Here,2^(nd)-and 3^(rd)-generation c-Met CARs containing an anti-c-Met singlechain variable fragment(scFv)as well as the CD28 signaling domain and CD3ζ(c-Met-28-3ζ),the CD137 signaling domain and CD3ζ(c-Met-137-3ζ),or the CD28 and CD137 signaling domains and CD3ζ(c-Met-28-137-3ζ)were constructed,and their abilities to target c-Met-positive HCC cells were evaluated in vitro and in vivo.All c-Met CARs were stably expressed on T cell membrane,and c-Met CAR-T cells aggregated around c-Met-positive HCC cells and specifically killed them in vitro.c-Met-28-137-3ζCAR-T cells secreted more interferon-gamma(IFN-γ)and interleukin 2(IL-2)than c-Met-28-3ζCAR-T cells and c-Met-137-3ζCAR-T cells.Compared with c-Met low-expressed cells,c-Met CAR-T cells secreted more cytokines when co-cultured with c-Met high-expressed cells.Moreover,c-Met-28-137-3ζCAR-T cells eradicated HCC more effectively in xenograft tumor models compared with the control groups.This study suggests that 3^(rd)-generation c-Met CAR-T cells are more effective in inhibiting c-Met-positive HCC cells than 2^(nd)-generation c-Met CAR-T cells,thereby providing a promising therapeutic intervention for c-Met-positive HCC.展开更多
Objective: Cytokine release syndrome (CRS) and tumor lysis syndrome (TLS) that occur after chimeric antigen receptor T (CAR-T) cells are reinfused, which severely affect the survival and prognosis of patients. Althoug...Objective: Cytokine release syndrome (CRS) and tumor lysis syndrome (TLS) that occur after chimeric antigen receptor T (CAR-T) cells are reinfused, which severely affect the survival and prognosis of patients. Although several articles have reported on the care of CAR-T cell immunotherapy, the quality of the study and the effectiveness of holistic nursing interventions have not been systematically reviewed. The purpose of this study was to systematically evaluate the existing holistic nursing interventions of CAR-T cell immunotherapy. Methods: A literature search for keywords was performed in PubMed, EMBASE, the Cochrane Library, CNKI, CBM, and Wanfang Data from its inception until January 2018. Studies were deemed eligible if they comprised patients with tumor receiving CAR-T cell immunotherapy, described the holistic nursing process, and were published in Chinese and English. Results: A total of 6 articles on holistic nursing interventions of CAR-T cell immunotherapy are reported, and the nursing methods and results of each article are analyzed. The quality of the studies included was medium. All nursing measures were considered effective. Conclusions: Holistic nursing programs reduce the incidence of CRS and TLS and improve the quality of life of cancer patients.展开更多
Plant cytoplasmic male sterility(CMS)is maternally inherited and often manifested as aborted pollen development,but the molecular basis of abortion remains to be identified.To facilitate an investigation of CMS in cot...Plant cytoplasmic male sterility(CMS)is maternally inherited and often manifested as aborted pollen development,but the molecular basis of abortion remains to be identified.To facilitate an investigation of CMS in cotton,the complete sequence of cotton mitochondrial(mt)genome for CMS-D2 line ZBA was determined.The mt genome was assembled as a single circular molecule with 634,036 bp in length.A total of 194 ORFs,36 protein-coding genes,six r RNAs,and 24 t RNAs were identified.Several chimeric genes encoding hypothetical proteins with transmembrane domains were identified.Among them,a previously unknown chimeric gene,orf610a,which is composed of atp1 and a 485-bp downstream sequence of unknown nature,was identified.RT-PCR and q RT-PCR validation indicated that orf610a was expressed specifically in a sterile line.Ectopic expression of orf610a in yeast resulted in excessive accumulation of reactive oxygen species and reduction in ATP content,in addition to inhibition of cellular growth.Transgenic A.thaliana overexpressing orf610a fused with a mitochondrial targeting peptide displayed partial male sterility.Interaction between ORF610a and the nuclear-encoded protein RD22 indicated an association between ORF610a and pollen abortion.Positive feedback during transcriptional regulation between nuclear regulatory factors and the mt CMS gene may account for the male sterility of ZBA.展开更多
AIM: To improve the immunogenicity of receptor binding site of hepatitis B virus (HBV) on preS1 antigen using HBV core antigen as an immuno-carrier. METHODS: One to 6 tandem copies of HBV preS1 (21-47) fragment were i...AIM: To improve the immunogenicity of receptor binding site of hepatitis B virus (HBV) on preS1 antigen using HBV core antigen as an immuno-carrier. METHODS: One to 6 tandem copies of HBV preS1 (21-47) fragment were inserted into HBcAg at the sites of aa 78 and 82, and expressed in E.coli. ELISA, Western blot and animal immunization were used to analyze the antigenicity and immmunogenicity of purified particulate antigens. The ability to capture HBV by antibodies elicited by chimeric particles was detected with immuno-capture PCR. RESULTS: Recombinant antigens CI, CII, CIII carrying 1-3 copies of HBV preSl (21-47) individually could form virus-like particles (VLPs), similar to HBcAg in morphology. But recombinant antigens carrying 4-6 copies of HBV preSl (21-47) were poorly expressed in E.coli. Chimeric antigens were lacking of immunoreactivity with anti-HBc monoclonal antibodies (McAbs), but still reserved good immunoreactivity with anti-HBe McAbs. CI, CII, CIII could strongly react with anti-preS1 McAb, suggesting that preS1 (21-47) fragment was well exposed on the surface of chimeric VLPs. Three chimeric VLP antigens (CI, CII and CIII) could stimulate mice to produce high-level antibody responses, and their immunogenicity was stronger than non-particulate antigen 21-47*6, containing 6 copies of preS1 (21-47). Mouse antibodies to CI, CII and CIII were able to capture HBV virions in immuno-capture PCR assay in vitro. CONCLUSION: Chimeric particulate antigens of receptor binding site-core antigen of HBV can elicit strong antibody responses to preS1. They have a potential to be developed into prophylactic or therapeutic vaccines against HBV infection.展开更多
We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG1397-139...We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG1397-1399 and GGC1274-1276 as translation initiation codons to produce normal 50-kDa ACAT1 and a novel enzymatically active 56-kDa isoform, respectively, with the latter being authentically present in human cells, including human monocyte- derived macrophages. In this work, we report that RNA secondary structures located in the vicinity of the GGC1274-1276 codon are required for production of the 56-kDa isoform. The effects of the three predicted stem-loops (nt 1255-1268, 1286-1342 and 1355-1384) were tested individually by transfecting expression plasmids into cells that contained the wild-type, deleted or mutant stem-loop sequences linked to a partial ACAT1 AUG open reading frame (ORF) or to the ORFs of other genes. The expression patterns were monitored by western blot analyses. We found that the upstream stem-loop1255-1268 from chromosome 7 and downstream stem-loop1286-1342 from chromosome 1 were needed for production of the 56-kDa isoform, whereas the last stem-loop135s-1384 from chromosome 1 was dispensable. The results of experi- ments using both monocistronic and bicistronic vectors with a stable hairpin showed that translation initiation from the GGC1274-1276 codon was mediated by an internal ribosome entry site (IRES). Further experiments revealed that translation initiation from the GGC1274-1276 codon requires the upstream AU-constituted RNA secondary structure and the downstream GC-rich structure. This mechanistic work provides further support for the biological significance of the chimeric nature of the human ACAT1 transcript.展开更多
Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, GEM and SMMC7721) and the effector cells, fr...Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, GEM and SMMC7721) and the effector cells, freshly isolated human PBMC, with the ratio of target cells to effector cells 1:50, were incubated in various dilutions of D2C antibody ( Ab) . Antibody dependent cytotoxicity (AD-CC) was tested by using an LDH-release assay. Instead of effector cells, complement was added to the target cells (GEM, SMMC-7721) with various dilutions of D2C Ab. A method of counting death cells was used in complement dependent cytotoxicity (CDC) assay. Tumor localization and distribution of the chimeric antibody (D2C) were observed by labeling the chimeric Ab with radioiodine(131I) and injecting it into nude mice (Balb/c nu/nu) transplanted with human hepatocellular carcinoma cells (SMMC-7721).Results A significant ADCC was observed with the increased concentration of the D2C Ab. Cytolysis of CD71-positive target cells by the D2C Ab was found in the presence of fresh rabbit complement. Labeled D2C administered by intraperitoneal as well as tumor regional injection, was visualized by SPECT. The distribution of D2C Ab in murine organs and tissues showed that non-specific binding was lower following tumor regional administration than when the antibody was administered by an intraperitoneal injection. The human/murine chimeric antibody (D2C) has in vitro anti-tumor effects and can exert its effects in specific tumor localization. Its distribution and local effects in vivo can be detected by radioimmunoimaging.Conclusion CD71 human/murine chimeric antibody showed marked killing of tumor cells in vitro, and specific recognition and high affinity binding to tumor tissue in vivo展开更多
With the advance of genome engineering technology,chimeric antigen receptors(CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors.Although initially designed for T cells in tumor immunother...With the advance of genome engineering technology,chimeric antigen receptors(CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors.Although initially designed for T cells in tumor immunotherapy,CARs have been exploited to modify the function of natural killer(NK)cells against a variety of tumors,including hepatocellular carcinoma(HCC).CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells,independent of major histocompatibility complex matching or prior priming.In this review,we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.展开更多
基金funded by 2023 Sichuan Scientific and Technological Achievements Transformation Project.Project Number:2023JDZH0024.
文摘Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.
文摘Chest wall reconstruction is a surgical procedure aimed at restoring the integrity and function of the chest wall, which may be damaged due to trauma, cancer, infection, or congenital defects. The chest wall plays a vital role in protecting the thoracic organs, supporting the respiratory system, and maintaining the shape of the chest. Therefore, any defect or deformity of the chest wall can have significant functional and aesthetic consequences for the patient. The authors present a case report at Kenyatta National Hospital (KNH) of a dyspneic 47-year-old male patient with a right anterolateral chest wall defect post-pneumonectomy previously complicated by bronchopleural fistula. Past attempts at the chest wall reconstruction had utilized the ipsilateral latissimus dorsi muscle, pectoralis major muscle, and the omental pedicled flaps with limited success. A chimeric anterolateral thigh (ALT) perforator-free flap with vastus lateralis (VL) muscle was used to obliterate the post-pneumonectomy intrathoracic dead space and to provide a cutaneous paddle. This case report aims to show the versatility of the ALT flap for chest wall reconstruction to prevent the post-pneumonectomy syndrome associated with tracheal deviation, inspiratory stridor, and exertional dyspnea. In conclusion, chest wall reconstruction with obliteration of intrathoracic dead space post-pneumonectomy is challenging and needs careful planning and execution.
文摘BACKGROUND Post-transplant lymphoproliferative disorder(PTLD)is a rare but highly fatal complication occurring after allogeneic hematopoietic cell transplantation(allo-HCT)or solid organ transplantation(SOT).Unlike SOT,PTLD after allo-HCT usually originates from the donor and is rarely accompanied by a loss of donor chimerism.CASE SUMMARY We report a case of Epstein-Barr virus positive PTLD manifesting as diffuse large B-cell lymphoma(DLBCL)with significantly decreased T-cell chimerism early after allo-HCT.A 30-year-old patient with acute myeloid leukemia underwent unrelated allo-HCT after first complete remission.Nearly 3 mo after transplantation,the patient developed cervical lymph node enlargement and gastric lesions,both of which were pathologically suggestive of DLBCL.Meanwhile,the patient experienced a significant and persistent decrease in T-cell chimerism.A partial remission was achieved after chemotherapy with single agent rituximab and subsequent R-CHOP combined chemotherapy.CONCLUSION The loss of T-cell chimerism and the concomitant T-cell insufficiency may be the cause of PTLD in this patient.
文摘A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression cassettes for the Bt29K and API-B genes was constructed. These two insect-resistant genes were transferred into two cotton ( Gossypium hirsutum L.) varieties ( or lines) via Agrobacterium-mediated transformation and nine homozygous transgenic cotton lines showing a mortality of 90.0% - 99.7% to cotton ballworm (Heliothis armigera) larvae and good agronomic traits were selected through six generations. Molecular biology analysis revealed that one or two copies of the insecticidal protein genes were integrated into the transgenic cotton genome and activated Cry1Ac and API-B protein expression was at a level of 0.17% and 0.09% of the total soluble protein in the transgenic cotton leaves, respectively. Comparison of the insect-resistance of the homozygous lines expressing the activated chimeric Cry1Ac and API-B with that expressing Cry1Ac only revealed that the insect-resistance of the former is apparently higher than the latter. These results also indicate that the strategy to construct a plant expression vector expressing two different insect-resistant genes reported here is reasonable.
文摘Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.
文摘Background: Chimeric antigen receptor-engineered T-cell(CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hematological malignancies, its application has been explored in the treatment of solid tumors, such as liver cancer. In this review, we discuss the immune characteristics of liver cancer, the obstacles encountered during the application of CAR-T therapy, and preclinical and clinical progress in the use of CAR-T therapy in patients with liver cancer.Data sources: The data on CAR-T therapy related to liver cancers were collected by searching Pub Med and the Web of Science databases prior to December 2017 with the keywords "chimeric antigen receptor","CAR-T", "liver cancer", "hepatocellular carcinoma", and "solid tumor". Additional articles were identified by manual search of references found in the primary articles. The data for clinical trials were collected by searching Clinical Trials.gov.Results: The liver has a tolerogenic nature in the intrahepatic milieu and its tumor microenvironment significantly affects tumor progression. The obstacles that reduce the efficacy of CAR-T therapy in solid tumors include a lack of specific tumor antigens, limited trafficking and penetration of CAR-T cells to tumor sites, and an immunosuppressive tumor microenvironment. To overcome these obstacles, several strategies have emerged. In addition, several strategies have been developed to manage the side effects of CAR-T, including enhancing the selectivity of CARs and controlling CAR-T activity. To date, no clinical trials of CAR-T therapy against HCC have been completed. However, preclinical studies in vitro and in vivo have shown potent antitumor efficacy. Glypican-3, mucin-1, epithelial cell adhesion molecule, carcinoembryonic antigen, and other targets are currently being studied.Conclusions: The application of CAR-T therapy for liver cancer is just beginning to be explored and more research is needed. However, we are optimistic that CAR-T therapy will offer a new approach for the treatment of liver cancers in the future.
基金supported in part by grants from the Special Fund of Clinical Medicine in Jiangsu Province(BL2013038)the Graduate Student Innovation Fund(CXZZ12_0563)
文摘T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus(EBV) associated malignancies.The EBV latent membrane protein 1(LMP1) is a 66-KD integral membrane protein encoded by EBV that consists of transmembrane-spanning loops.Previously,we have identified a functional signal chain variable fragment(scFv) that specifically recognizes LMP1 through phage library screening.Here,we constructed a LMP1 specific chimeric antigen receptor containing anti-LMP1 scFv,the CD28 signalling domain,and the CD3ζchain(HELA/CAR).We tested its functional ability to target LMP1 positive nasopharyngeal carcinoma cells.HELA/CAR cells were efficiently generated using lentivirus vector encoding the LMP1-specific chimeric antigen receptor to infect activated human CD3+ T cells.The HELA/CAR T cells displayed LMP1 specific cytolytic action and produced IFN-γ and IL-2 in response to nasopharyngeal carcinoma cells overexpressing LMP1.To demonstrate in vivo anti-tumor activity,we tested the HELA/CAR T cells in a xenograft model using an LMP1 overexpressing tumor.Intratumoral injection of anti-LMP1 HELA/CAR-T cells significantly reduced tumor growth in vivo.These results show that targeting LMP1 using HELA/CAR cells could represent an alternative therapeutic approach for patients with EBV-positive cancers.
基金supported in part by Chinese National Major Project for New Drug Innovation (2008ZX09312-020,2009ZX09503-014,2012ZX09303012 and 2013ZX09402301)National Key Technology Support Program (2014BAI09B12)+1 种基金Beijing Municipal Science and Technology Commission Major Project for New Drug Innovation (Z111102071011001)Beijing Municipal Science and Technology Commission Project for Beijing Key Laboratory (Z121102009212055)
文摘Objective: This study was designed to determine the safety, pharmacokinetics and biologic effects of a humanmouse chimeric anti-CD20 monoclonal antibody (SCT400) in Chinese padents with CD20-positive B-cell non- Hodgkin's lymphoma (CD20 B-cell NHL). SCT400 has an identical amino acid sequence as rituximab, with the exception of one amino acid in the CH1 domain of the heavy chain, which is common in Asians. Methods: Fifteen patients with CD20+ B-cell NHL received dose-escalating SCT400 infusions (250 mg/m2: n=3; 375 mg/m2: n=9; 500 mg/m2: n=3) once weekly for 4 consecutive weeks with a 24-week follow-up period. The data of all patients were collected for pharmacoklnetics and pharmacodynamics analyses. Results: No dose-limiting toxicities were observed. Most drug-related adverse events were grade 1 or 2. Two patients had grade 3 or 4 ncutropenia. Under premedication, the drug-related infusion reaction was mild. A rapid, profound and durable depletion of circulating B cells was observed in all dose groups without significant effects on T cell count, natural killer (NK) cell count or immunoglobulin levels. No patient developed anti- SCT400 antibodies during the course of the study. SCT400 serum half-life (Tin), maximum concentration (Cmax and area under the curve (AUC) generally increased between the first and fourth infusions (P〈0.05). At the 375 mg/m2 dose, the T1/2 was 122.5±46.7 h vs. 197.0,75.0 11, respectively, and the Cmax was 200.6±20.2 pg/mL vs. 339.1±71.0 ng/mL, respectively. From 250 mg/m2 to 500 mg/m2, the Cmax and AUC increased significantly in a dose-dependent manner (P〈0.05). Patients with a high tumor burden had markedly lower serum SCT400 concenmations compared with those without or with a low tumor burden. Of the 9 assessable patients, 1 achieved complete response and 2 achieved partial responses. Conclusions; SCT400 is well-tolerated and has encouraging preliminary efficacy in Chinese patients with CD20+ B-cell NHL.
基金Supported by Shanghai Science and Technology Development Foundation Project,No.12140900300Shanghai Municipal Commission of Health and Family Planning Project,No.20144Y0073+1 种基金Shanghai Public Health Clinical Center Project,No.2014M08National Science and Technology Major Project,No.2017ZX10304402-001-012
文摘AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liverhumanized mice.METHODS We crossed three mouse strains,including albumin(Alb)-cre transgenic mice,inducible diphtheria toxin receptor(DTR) transgenic mice and severe combined immune deficient(SCID)-beige mice,to create Alb-cre/DTR/SCID-beige(ADSB) mice,which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb(encoding ALB),the DTR stop signal flanked by two lox P sites can be deleted in the ADSB mice,resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally(i.p.) with diphtheria toxin(DT) and liver damage was assessed by serum alanine aminotransferase(ALT) level. Two days later,mouse livers were sampled for histological analysis,and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7,14,21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation.RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2,increased on day 7,and was lowest on day 4(range,10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/m L on day 4,then returned to background values on day 7. After transplantation of human liver cells,peripheral blood human ALB level was 1580 ± 454.8 ng/m L(range,750.2-3064.9 ng/m L) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice.CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications,such as hepatocyte transplantation,hepatic regeneration and drug metabolism.
基金Supported by the Deutsche Krebshilfe, No. 10-2106-Wi1
文摘AIM: To investigate the c-kit expression in biliary tract cancer cell lines and histological sections from patients with extrahepatic cholangiocarcinoma (CC) and to evaluate the efficacy of in vitro and in vitro treatment with imatinib mesilate. METHODS: The protein expression of c-kit in the human biliary tract cancer cell lines Mz-ChA-2 and EGI-1 and histological sections from 19 patients with extrahepatic CC was assessed by immunoblotting, immunocytochemistry, and immunohistochemistry. The anti-proliferative effect of imatinib mesilate on biliary tract cancer cell lines Mz-ChA-2 and EGI-1 was studied in vitro by automated cell counting. In addition, immunodeficient NMRI mice (Taconic^TM) were subcutaneously injected with 5 × 10^6 cells of cell lines MzChA-2 and EGI-1. After having reached a tumour volume of 200 mm^3, daily treatment was started intraperitoneally with imatinib mesilate at a dose of 50 mgikg or normal saline (NS). Tumor volume was calculated with a Vernier caliper. After 14 d, mice were sacrificed with tumors excised and tumor mass determined.RESULTS: Immunoblotting revealed presence of c-kit in Mz-ChA-2 and absence in EGI-1 cells. Immunocytochemistry with c-kit antibodies displayed a cytoplasmatic and membraneous localization of receptor protein in Mz-ChA-2 cells and absence of c-kit in EGI-1 cells, c-kit was expressed in 7 of 19 (37%) extrahepatic humanCC tissue samples, 2 showed a moderate and 5 a rather weak immunostaining. Imatinib mesilate at a low concentration of 5 μmoliL caused a significant growth inhibition in the c-kit positive cell line Mz-ChA-2 (31%), but not in the c-kit negative cell line EGI-1 (0%) (P〈0.05). Imatinib mesilate at an intermediate concentration of 10 μmoliL inhibited cellular growth of both cell lines (51% vs 57%). Imatinib mesilate at a higher concentration of 20 μmoliL seemed to have a general toxic effect on both cell lines. The IC50 values were 9.7 μmoliL and 11 μmoliL, respectively. After 14 d of in vitro treatment with imatinib mesilate, using the chimeric mouse model, c-kit positive Mz-ChA-2 tumors had a significantly reduced volume and mass as compared to NS treatment (P〈 0.05). In contrast to that, treatment of mice bearing c-kit negative EGI-1 tumors did not result in any change of tumor volume and mass as compared to NS treatment. CONCLUSION: c-kit expression is detectable at a moderate to low protein level in biliary tract cancer. Imatinib mesilate exerts marked effects on tumor growth in vitro andin vitro dependent on the level of c-kit expression.
文摘Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90's, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2020YFA0707704)the National Key Research and Development Program of China(Grant No.2016YFC1303800)+1 种基金the Jilin Scientific and Technological Development Program(CN)(Grant No.20190303146SF)the National Natural Science Foundation of China(Grant No.81874052).
文摘Cytokine release syndrome(CRS)is a major obstacle to the widespread clinical application of chimeric antigen receptor(CAR)T cell therapies.CRS can also be induced by infections(such as SARS-CoV-2),drugs(such as therapeutic antibodies),and some autoimmune diseases.Myeloid-derived macrophages play key roles in the pathogenesis of CRS,and participate in the production and release of the core CRS cytokines,including interleukin(IL)-1,IL-6,and interferon-γ.In this review,we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.
基金grants from National Natural Science Foundation of China(81773268)Collaborative Innovation Center for Cancer Personalized Medicine,China(JX21817902/005).
文摘c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma(HCC).Therefore,c-Met may serve as a promising target for HCC immunotherapy.Modifying T cells to express c-Met-specific chimeric antigen receptor(CAR)is an attractive strategy in treating c-Met-positive HCC.This study aimed to systematically evaluate the inhibitory effects of 2^(nd)-and 3^(rd)-generation c-Met CAR-T cells on hepatocellular carcinoma(HCC)cells.Here,2^(nd)-and 3^(rd)-generation c-Met CARs containing an anti-c-Met singlechain variable fragment(scFv)as well as the CD28 signaling domain and CD3ζ(c-Met-28-3ζ),the CD137 signaling domain and CD3ζ(c-Met-137-3ζ),or the CD28 and CD137 signaling domains and CD3ζ(c-Met-28-137-3ζ)were constructed,and their abilities to target c-Met-positive HCC cells were evaluated in vitro and in vivo.All c-Met CARs were stably expressed on T cell membrane,and c-Met CAR-T cells aggregated around c-Met-positive HCC cells and specifically killed them in vitro.c-Met-28-137-3ζCAR-T cells secreted more interferon-gamma(IFN-γ)and interleukin 2(IL-2)than c-Met-28-3ζCAR-T cells and c-Met-137-3ζCAR-T cells.Compared with c-Met low-expressed cells,c-Met CAR-T cells secreted more cytokines when co-cultured with c-Met high-expressed cells.Moreover,c-Met-28-137-3ζCAR-T cells eradicated HCC more effectively in xenograft tumor models compared with the control groups.This study suggests that 3^(rd)-generation c-Met CAR-T cells are more effective in inhibiting c-Met-positive HCC cells than 2^(nd)-generation c-Met CAR-T cells,thereby providing a promising therapeutic intervention for c-Met-positive HCC.
基金supported by Liaoning Natural Science Foundation(No.20180550229)
文摘Objective: Cytokine release syndrome (CRS) and tumor lysis syndrome (TLS) that occur after chimeric antigen receptor T (CAR-T) cells are reinfused, which severely affect the survival and prognosis of patients. Although several articles have reported on the care of CAR-T cell immunotherapy, the quality of the study and the effectiveness of holistic nursing interventions have not been systematically reviewed. The purpose of this study was to systematically evaluate the existing holistic nursing interventions of CAR-T cell immunotherapy. Methods: A literature search for keywords was performed in PubMed, EMBASE, the Cochrane Library, CNKI, CBM, and Wanfang Data from its inception until January 2018. Studies were deemed eligible if they comprised patients with tumor receiving CAR-T cell immunotherapy, described the holistic nursing process, and were published in Chinese and English. Results: A total of 6 articles on holistic nursing interventions of CAR-T cell immunotherapy are reported, and the nursing methods and results of each article are analyzed. The quality of the studies included was medium. All nursing measures were considered effective. Conclusions: Holistic nursing programs reduce the incidence of CRS and TLS and improve the quality of life of cancer patients.
基金supported by funds from the National Natural Science Foundation of China(31871679)the Tianshan Youth Program(2018Q010)the Central Public-interest Scientific Institution Basal Research Fund(1610162021015)。
文摘Plant cytoplasmic male sterility(CMS)is maternally inherited and often manifested as aborted pollen development,but the molecular basis of abortion remains to be identified.To facilitate an investigation of CMS in cotton,the complete sequence of cotton mitochondrial(mt)genome for CMS-D2 line ZBA was determined.The mt genome was assembled as a single circular molecule with 634,036 bp in length.A total of 194 ORFs,36 protein-coding genes,six r RNAs,and 24 t RNAs were identified.Several chimeric genes encoding hypothetical proteins with transmembrane domains were identified.Among them,a previously unknown chimeric gene,orf610a,which is composed of atp1 and a 485-bp downstream sequence of unknown nature,was identified.RT-PCR and q RT-PCR validation indicated that orf610a was expressed specifically in a sterile line.Ectopic expression of orf610a in yeast resulted in excessive accumulation of reactive oxygen species and reduction in ATP content,in addition to inhibition of cellular growth.Transgenic A.thaliana overexpressing orf610a fused with a mitochondrial targeting peptide displayed partial male sterility.Interaction between ORF610a and the nuclear-encoded protein RD22 indicated an association between ORF610a and pollen abortion.Positive feedback during transcriptional regulation between nuclear regulatory factors and the mt CMS gene may account for the male sterility of ZBA.
基金Supported by the Excellent Scholar Incubation Plan of Ministry of Education, China
文摘AIM: To improve the immunogenicity of receptor binding site of hepatitis B virus (HBV) on preS1 antigen using HBV core antigen as an immuno-carrier. METHODS: One to 6 tandem copies of HBV preS1 (21-47) fragment were inserted into HBcAg at the sites of aa 78 and 82, and expressed in E.coli. ELISA, Western blot and animal immunization were used to analyze the antigenicity and immmunogenicity of purified particulate antigens. The ability to capture HBV by antibodies elicited by chimeric particles was detected with immuno-capture PCR. RESULTS: Recombinant antigens CI, CII, CIII carrying 1-3 copies of HBV preSl (21-47) individually could form virus-like particles (VLPs), similar to HBcAg in morphology. But recombinant antigens carrying 4-6 copies of HBV preSl (21-47) were poorly expressed in E.coli. Chimeric antigens were lacking of immunoreactivity with anti-HBc monoclonal antibodies (McAbs), but still reserved good immunoreactivity with anti-HBe McAbs. CI, CII, CIII could strongly react with anti-preS1 McAb, suggesting that preS1 (21-47) fragment was well exposed on the surface of chimeric VLPs. Three chimeric VLP antigens (CI, CII and CIII) could stimulate mice to produce high-level antibody responses, and their immunogenicity was stronger than non-particulate antigen 21-47*6, containing 6 copies of preS1 (21-47). Mouse antibodies to CI, CII and CIII were able to capture HBV virions in immuno-capture PCR assay in vitro. CONCLUSION: Chimeric particulate antigens of receptor binding site-core antigen of HBV can elicit strong antibody responses to preS1. They have a potential to be developed into prophylactic or therapeutic vaccines against HBV infection.
文摘We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG1397-1399 and GGC1274-1276 as translation initiation codons to produce normal 50-kDa ACAT1 and a novel enzymatically active 56-kDa isoform, respectively, with the latter being authentically present in human cells, including human monocyte- derived macrophages. In this work, we report that RNA secondary structures located in the vicinity of the GGC1274-1276 codon are required for production of the 56-kDa isoform. The effects of the three predicted stem-loops (nt 1255-1268, 1286-1342 and 1355-1384) were tested individually by transfecting expression plasmids into cells that contained the wild-type, deleted or mutant stem-loop sequences linked to a partial ACAT1 AUG open reading frame (ORF) or to the ORFs of other genes. The expression patterns were monitored by western blot analyses. We found that the upstream stem-loop1255-1268 from chromosome 7 and downstream stem-loop1286-1342 from chromosome 1 were needed for production of the 56-kDa isoform, whereas the last stem-loop135s-1384 from chromosome 1 was dispensable. The results of experi- ments using both monocistronic and bicistronic vectors with a stable hairpin showed that translation initiation from the GGC1274-1276 codon was mediated by an internal ribosome entry site (IRES). Further experiments revealed that translation initiation from the GGC1274-1276 codon requires the upstream AU-constituted RNA secondary structure and the downstream GC-rich structure. This mechanistic work provides further support for the biological significance of the chimeric nature of the human ACAT1 transcript.
基金National Sciences Foundation of China(No.39970693)
文摘Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, GEM and SMMC7721) and the effector cells, freshly isolated human PBMC, with the ratio of target cells to effector cells 1:50, were incubated in various dilutions of D2C antibody ( Ab) . Antibody dependent cytotoxicity (AD-CC) was tested by using an LDH-release assay. Instead of effector cells, complement was added to the target cells (GEM, SMMC-7721) with various dilutions of D2C Ab. A method of counting death cells was used in complement dependent cytotoxicity (CDC) assay. Tumor localization and distribution of the chimeric antibody (D2C) were observed by labeling the chimeric Ab with radioiodine(131I) and injecting it into nude mice (Balb/c nu/nu) transplanted with human hepatocellular carcinoma cells (SMMC-7721).Results A significant ADCC was observed with the increased concentration of the D2C Ab. Cytolysis of CD71-positive target cells by the D2C Ab was found in the presence of fresh rabbit complement. Labeled D2C administered by intraperitoneal as well as tumor regional injection, was visualized by SPECT. The distribution of D2C Ab in murine organs and tissues showed that non-specific binding was lower following tumor regional administration than when the antibody was administered by an intraperitoneal injection. The human/murine chimeric antibody (D2C) has in vitro anti-tumor effects and can exert its effects in specific tumor localization. Its distribution and local effects in vivo can be detected by radioimmunoimaging.Conclusion CD71 human/murine chimeric antibody showed marked killing of tumor cells in vitro, and specific recognition and high affinity binding to tumor tissue in vivo
基金The National Natural Science Foundation of China,No.81972673.
文摘With the advance of genome engineering technology,chimeric antigen receptors(CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors.Although initially designed for T cells in tumor immunotherapy,CARs have been exploited to modify the function of natural killer(NK)cells against a variety of tumors,including hepatocellular carcinoma(HCC).CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells,independent of major histocompatibility complex matching or prior priming.In this review,we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.