Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fr...The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,ch...This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,characterized by optic nerve damage and visual field loss despite normal intraocular pressure,has long puzzled clinicians.One emerging perspective suggests that alterations in ocular blood flow,particularly within the optic nerve head,may play a pivotal role in its pathogenesis.While NTG shares commonalities with its high-tension counterpart,its unique pathogenesis and potential ties to cardiovascular health make it a fascinating subject of exploration.It navigates through the complex web of vascular dysregulation,blood pressure and perfusion pressure,neurovascular coupling,and oxidative stress,seeking to uncover the hidden threads that tie the heart and eyes together in NTG.This review explores into the intricate mechanisms connecting cardiovascular factors to NTG,shedding light on how cardiac dynamics can influence ocular health,particularly in cases where intraocular pressure remains within the normal range.NTG's enigmatic nature,often characterized by seemingly contradictory risk factors and clinical profiles,underscores the need for a holistic approach to patient care.Drawing parallels to cardiac health,we examine into the shared vascular terrain connecting the heart and the eyes.Cardiovascular factors,including systemic blood flow,endothelial dysfunction,and microcirculatory anomalies,may exert a profound influence on ocular perfusion,impacting the delicate balance within the optic nerve head.By elucidating the subtle clues and potential associations between cardiology and NTG,this review invites clinicians to consider a broader perspective in their evaluation and management of this elusive condition.As the understanding of these connections evolves,so too may the prospects for early diagnosis and tailored interventions,ultimately enhancing the quality of life for those living with NTG.展开更多
The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,un...The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,under a relatively high normal stress,normal stress and the coefficient of structural roughness are the most important factors affecting the mechanical interface characteristics. The relationship between shear stress and shear displacement of the soil-structure interface is a hyperbolic curve with high regression accuracy. Based on our experimental results,a nonlinear elastic con-stitutive model of the soil-structure interface under relatively high normal stress is established with a definite physical meaning for its parameters. The model can predict the strain hardening behavior of the soil during the shearing process. The results show an encouraging agreement with experimental data from direct shear tests.展开更多
The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandi...The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandis model is used to calculate the fracture closure due to normal stress,and the fluid flow is simulated by solving the Reynold equation.The Lagrangian particle tracking method is applied to modeling the advective transport in the fracture.The results show that the normal stress significantly affects fluid flow and solute transport in rock fractures.It causes fracture closure and creates asperity contact areas,which significantly reduces the effective hydraulic aperture and enhances flow channeling.Consequently,the reduced aperture and enhanced channeling affect travel time distributions.In particular,the enhanced channeling results in enhanced first arriving and tailing behaviors for solute transport.The fracture normal stiffness correlates linearly with the 5th and 95th percentiles of the normalized travel time.The finding from this study may help to better understand the stress-dependent solute transport processes in natural rock fractures.展开更多
Normal tension glaucoma(NTG)is a multifactorial optic neuropathy characterized by normal intraocular pressure,progressive retinal ganglion cell(RGC)death,and glaucomatous visual field loss.Recent studies have describe...Normal tension glaucoma(NTG)is a multifactorial optic neuropathy characterized by normal intraocular pressure,progressive retinal ganglion cell(RGC)death,and glaucomatous visual field loss.Recent studies have described the mechanisms underlying the pathogenesis of NTG.In addition to controlling intraocular pressure,neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG.In this review,we summarized the main regulatory mechanisms of RGC death in NTG,including autophagy,glutamate neurotoxicity,oxidative stress,neuroinflammation,immunity,and vasoconstriction.Autophagy can be induced by retinal hypoxia and axonal damage.In this process,ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway.Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate,which occurs in RGCs and induces progressive glaucomatous optic neuropathy.Oxidative stress also participates in NTG-related glaucomatous optic neuropathy.It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway.Moreover,it increases inflammation and the immune response of RGCs.Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow,promoting vasospasm and glaucomatous optic neuropathy,as a result of NTG.In conclusion,we discussed research progress on potential options for the protection of RGCs,including TANK binding kinase 1 inhibitors regulating autophagy,N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity,ASK1 inhibitors regulating mitochondrial function,and antioxidants inhibiting oxidative stress.In NTG,RGC death is regulated by a network of mechanisms,while various potential targets protect RGCs.Collectively,these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.展开更多
Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plottin...Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.展开更多
Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very import...Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very important to handle emotions and stress coping strategies to obtain positive outcomes. Objective: To identify the most frequent emotions, as well as the adaptation strategies to the new normality faced by the students of nursing. Methods: Qualitative and phenomenological research, with the participation of 20 students from both genders in the middle term of nursing career at Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, from August to November 2021. Information was collected from a focal group for ten sessions;analysis was according to De Souza Minayo, and there was a signed informed consent letter from participants. Results: Four categories emerged with sub-categories. Category I Maximized emotions. Sub-categories: 1) Frustration, anger, disappointment;2) Personal disappointment, hopelessness, uncertainty;3) Depression. Category II Support elements close to the new normality. Sub-categories: 1) Family communication;2) Education for mental and physical health. Category III Stressing situations that exceeded the student. Sub-category: Disease in lovely ones. Category IV Stress coping strategies. Sub-categories: 1) Friends and relatives that help to get better;2) Family values. Informers pointed out to have maximized emotion, and having no self-control on its negative outcomes occurred;in addition, the situation was not favorable at home with several losses of loved ones, as well as a poor economy that threatened students to give up studies. Conclusion: Emotions facing this new normality are very important and should be attended to, their proper handling will result in a new learning of socio-emotional abilities, stress coping strategies development, better adaptation and informed decisions taken.展开更多
Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stre...Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero.展开更多
The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estim...The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estimating parameters under a normal stress.展开更多
This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxia...This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxial compression,and indirect tensile.The Desai yield surface and fatigue path were proposed.And a normalized fatigue characteristics model of the mixture was established.The following conclusions were obtained.With the increases in the loading rate,the strength of the asphalt mixture increased.As the temperature increases,the strength of the mixture is reduced.At various temperatures and rates,the strength forms a closed curved surface.The Desai strength yield surface was established,which forms a closed curved surface.When the loading rate and temperature are below a certain critical line,the asphalt mixture will not undergo strength damage.At a fixed stress state,the fatigue damage path of the mixture was determined.The stress ratio was determined considering the influence of the loading rate.In this way,a normalized model can be described to express the asphalt mixture fatigue properties at various temperatures and stress levels.For the asphalt mixture in an indirect tensile state,the normalized fatigue equation parameter is 4.09.This model is more suitable for reflecting the viscous-elastic behavior of the mixtures than the fatigue equation determined by the notional stress ratio.展开更多
Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for d...Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.展开更多
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC...Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
基金supported by Fundamental Research Funds for the Central Universities(22dfx06)Natural Science Foundation of Guangdong Province-Joint Program for Ofshore Wind Power(2022A1515240009).
文摘The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
文摘This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,characterized by optic nerve damage and visual field loss despite normal intraocular pressure,has long puzzled clinicians.One emerging perspective suggests that alterations in ocular blood flow,particularly within the optic nerve head,may play a pivotal role in its pathogenesis.While NTG shares commonalities with its high-tension counterpart,its unique pathogenesis and potential ties to cardiovascular health make it a fascinating subject of exploration.It navigates through the complex web of vascular dysregulation,blood pressure and perfusion pressure,neurovascular coupling,and oxidative stress,seeking to uncover the hidden threads that tie the heart and eyes together in NTG.This review explores into the intricate mechanisms connecting cardiovascular factors to NTG,shedding light on how cardiac dynamics can influence ocular health,particularly in cases where intraocular pressure remains within the normal range.NTG's enigmatic nature,often characterized by seemingly contradictory risk factors and clinical profiles,underscores the need for a holistic approach to patient care.Drawing parallels to cardiac health,we examine into the shared vascular terrain connecting the heart and the eyes.Cardiovascular factors,including systemic blood flow,endothelial dysfunction,and microcirculatory anomalies,may exert a profound influence on ocular perfusion,impacting the delicate balance within the optic nerve head.By elucidating the subtle clues and potential associations between cardiology and NTG,this review invites clinicians to consider a broader perspective in their evaluation and management of this elusive condition.As the understanding of these connections evolves,so too may the prospects for early diagnosis and tailored interventions,ultimately enhancing the quality of life for those living with NTG.
基金Projects 50534040 supported by the National Natural Science Foundation of China2002CB412704 by the Major State Basic Research and Development Program of China
文摘The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,under a relatively high normal stress,normal stress and the coefficient of structural roughness are the most important factors affecting the mechanical interface characteristics. The relationship between shear stress and shear displacement of the soil-structure interface is a hyperbolic curve with high regression accuracy. Based on our experimental results,a nonlinear elastic con-stitutive model of the soil-structure interface under relatively high normal stress is established with a definite physical meaning for its parameters. The model can predict the strain hardening behavior of the soil during the shearing process. The results show an encouraging agreement with experimental data from direct shear tests.
基金funding provided by the Swedish Nuclear Fuel and Waste Management Co.(SKB)。
文摘The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandis model is used to calculate the fracture closure due to normal stress,and the fluid flow is simulated by solving the Reynold equation.The Lagrangian particle tracking method is applied to modeling the advective transport in the fracture.The results show that the normal stress significantly affects fluid flow and solute transport in rock fractures.It causes fracture closure and creates asperity contact areas,which significantly reduces the effective hydraulic aperture and enhances flow channeling.Consequently,the reduced aperture and enhanced channeling affect travel time distributions.In particular,the enhanced channeling results in enhanced first arriving and tailing behaviors for solute transport.The fracture normal stiffness correlates linearly with the 5th and 95th percentiles of the normalized travel time.The finding from this study may help to better understand the stress-dependent solute transport processes in natural rock fractures.
基金supported in part by the Technology Foundation of Tianjin Eye Hospital of China, No. YKQN1911 (to WCS)Tianjin Health Science and Technology Project, No. TJWJ2021QN071 (to WCS)Translational Medicine Research Project of State Key Laboratory of Experimental Hematology of China, No. Z21-11 (to BQH)
文摘Normal tension glaucoma(NTG)is a multifactorial optic neuropathy characterized by normal intraocular pressure,progressive retinal ganglion cell(RGC)death,and glaucomatous visual field loss.Recent studies have described the mechanisms underlying the pathogenesis of NTG.In addition to controlling intraocular pressure,neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG.In this review,we summarized the main regulatory mechanisms of RGC death in NTG,including autophagy,glutamate neurotoxicity,oxidative stress,neuroinflammation,immunity,and vasoconstriction.Autophagy can be induced by retinal hypoxia and axonal damage.In this process,ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway.Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate,which occurs in RGCs and induces progressive glaucomatous optic neuropathy.Oxidative stress also participates in NTG-related glaucomatous optic neuropathy.It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway.Moreover,it increases inflammation and the immune response of RGCs.Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow,promoting vasospasm and glaucomatous optic neuropathy,as a result of NTG.In conclusion,we discussed research progress on potential options for the protection of RGCs,including TANK binding kinase 1 inhibitors regulating autophagy,N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity,ASK1 inhibitors regulating mitochondrial function,and antioxidants inhibiting oxidative stress.In NTG,RGC death is regulated by a network of mechanisms,while various potential targets protect RGCs.Collectively,these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
文摘Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.
文摘Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very important to handle emotions and stress coping strategies to obtain positive outcomes. Objective: To identify the most frequent emotions, as well as the adaptation strategies to the new normality faced by the students of nursing. Methods: Qualitative and phenomenological research, with the participation of 20 students from both genders in the middle term of nursing career at Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, from August to November 2021. Information was collected from a focal group for ten sessions;analysis was according to De Souza Minayo, and there was a signed informed consent letter from participants. Results: Four categories emerged with sub-categories. Category I Maximized emotions. Sub-categories: 1) Frustration, anger, disappointment;2) Personal disappointment, hopelessness, uncertainty;3) Depression. Category II Support elements close to the new normality. Sub-categories: 1) Family communication;2) Education for mental and physical health. Category III Stressing situations that exceeded the student. Sub-category: Disease in lovely ones. Category IV Stress coping strategies. Sub-categories: 1) Friends and relatives that help to get better;2) Family values. Informers pointed out to have maximized emotion, and having no self-control on its negative outcomes occurred;in addition, the situation was not favorable at home with several losses of loved ones, as well as a poor economy that threatened students to give up studies. Conclusion: Emotions facing this new normality are very important and should be attended to, their proper handling will result in a new learning of socio-emotional abilities, stress coping strategies development, better adaptation and informed decisions taken.
基金This research was funded by the Fundamental Research Funds for the Central Universities,CHD(Grant Nos.300102210307 and 300102210308)the National Natural Science Foundation of China(Grant Nos.41831286 and 41972297)the Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-369).
文摘Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero.
文摘The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estimating parameters under a normal stress.
基金This manuscript is supported by the National Natural Science Foundation of China(Grant numbers:52108398,52225806,52078063)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province(kfj210502).
文摘This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxial compression,and indirect tensile.The Desai yield surface and fatigue path were proposed.And a normalized fatigue characteristics model of the mixture was established.The following conclusions were obtained.With the increases in the loading rate,the strength of the asphalt mixture increased.As the temperature increases,the strength of the mixture is reduced.At various temperatures and rates,the strength forms a closed curved surface.The Desai strength yield surface was established,which forms a closed curved surface.When the loading rate and temperature are below a certain critical line,the asphalt mixture will not undergo strength damage.At a fixed stress state,the fatigue damage path of the mixture was determined.The stress ratio was determined considering the influence of the loading rate.In this way,a normalized model can be described to express the asphalt mixture fatigue properties at various temperatures and stress levels.For the asphalt mixture in an indirect tensile state,the normalized fatigue equation parameter is 4.09.This model is more suitable for reflecting the viscous-elastic behavior of the mixtures than the fatigue equation determined by the notional stress ratio.
基金Project(10572141) supported by the National Natural Science Foundation of China
文摘Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
文摘Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.