期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method
1
作者 Hao Xue Tao Wang +2 位作者 Xinyu Cui Yifan Wang Guangyan Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期1-17,共17页
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology... Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future. 展开更多
关键词 Additive manufacturing Topology optimization ballistic performance Projectile design
下载PDF
Ballistic performance of spaced multi-ply soft fabrics: Experimental and numerical investigation
2
作者 Zhongwei Zhang Xiaoning Yang +4 位作者 Yuan Lin Ziming Xiong Yuhang Xiang Yi Zhou Mingyang Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期143-155,共13页
It has been reported that the ply gap influences the ballistic resistance of spaced multi-ply fabric systems,but its working mechanism was not well-understood. This paper reports the experimental and numerical approac... It has been reported that the ply gap influences the ballistic resistance of spaced multi-ply fabric systems,but its working mechanism was not well-understood. This paper reports the experimental and numerical approaches and results of an investigation on the mechanisms that enable the improved ballistic performance of spaced multi-ply systems. Penetration tests were performed over a range of impact velocities ranging from 200 m/s to 400 m/s. The results confirmed that the ply gap is beneficial to the energy absorption capability of the systems. This is because the front plies tend to absorb more energy when they are not immediately constrained by the rear plies. During a ballistic event, the gap relieves the reflection of the compressive pulse, prolonging the projectile engagement time with the front plies;on the other hand, the rear plies become increasingly less active in dissipating energy as the gap increases.When the gap is sufficiently widened to avoid any interference between the plies before the failure of the front ply, the responses of the whole system no longer vary. It was also found that the ballistic performance of the spaced systems is influenced by ply thickness, impact velocity, and the stacking order of the ply gap. 展开更多
关键词 Energy absorption capability Ply gap ballistic performance The front ply The rear ply
下载PDF
Ballistic performances of the hourglass lattice sandwich structures under high-velocity fragments
3
作者 He-xiang Wu Jia Qu Lin-zhi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期312-325,共14页
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc... In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances. 展开更多
关键词 Hourglass lattice sandwich structures ballistic performances high-velocity Finite element analysis
下载PDF
Ballistic performance of tungsten particle/metallic glass matrix composite long rod 被引量:6
4
作者 Ji-cheng Li Xiao-wei Chen Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期132-145,共14页
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ... In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little. 展开更多
关键词 TUNGSTEN particle/metallic glass matrix (WP/MG)composite ballistIC performance Shear band Self-sharpening Numerical analysis
下载PDF
Parametric study on the ballistic performance of seamed woven fabrics 被引量:1
5
作者 Hang Li Rui Zhang +2 位作者 Shengnan Min Yi Zhou Jiuxiao Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期173-189,共17页
The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on t... The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility. 展开更多
关键词 FABRIC ballistic performance Seaming technology Energy absorption
下载PDF
Ballistic Performance and Damage Characteristics of Chemical Vapor Infiltration Quasi 3D-Cf/SiC Composites 被引量:1
6
作者 何旭道 程兴旺 +1 位作者 wang qi wang pei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期118-122,共5页
To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducte... To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption. 展开更多
关键词 CVI-Cf/SiC composites material ballistic performance damage characteristics
下载PDF
Effect of Hardfacing Consumables on Ballistic Performance of Q&T Steel Joints 被引量:1
7
作者 M.BALAKRISHNAN V.BALASUBRAMANIAN G.MADHUSUDHAN REDDY 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第4期249-258,共10页
This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,j... This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,joints were fabricated using 4 mm thick tungsten carbide(WC)/chromium carbide(CrC)hardfaced middle layer;above and below which austenitic stainless steel(SS)layers were deposited on both sides of the hardfaced interlayer.Shielded metal arc welding(SMAW)process were used to deposite all(hardfaced layer and SS layers)layers.The fabricated joints were evaluated for its ballistic performance,and the results were compared with respect to depth of penetration(DOP)on weld metal and heat-affected zone(HAZ)locations.From the ballistic test results,it was observed that both the joints successfully stopped the bullet penetration at weld center line.Of the two joints,the joint made with CrC hardfaced interlayer(CAHA)offered better ballistic resistance at weld metal.This is because its hardness is higher due to the presence of primary carbides of needle shape,polyhedral shape and eutectic matrix containing a mixture of gt M7C3carbides in the CrC hardfaced interlayer.The scattering hardness level in the WC interlayer,the matrix decomposition resulted lower hardness and the co-existence of d ferrite in the interface between hardfacing and SS root/SS cap could be attributed to the inferior ballistic resistance of the joint made with WC hardfaced interlayer(WAHA joint). 展开更多
关键词 弹道性能 耐磨堆焊 M7C3型碳化物 耗材 焊接金属 焊缝金属 初生碳化物 淬火效果
下载PDF
Influences of nanotwin volume fraction on the ballistic performance of coarse-grained metals
8
作者 Q.D.Ouyang G.J.Weng +1 位作者 A.K.Soh X.Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第5期265-268,共4页
Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based o... Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes. 展开更多
关键词 Nanotwin ballistic performance Volume fraction Limit velocity Limit displacement
下载PDF
Study on performance degradation and failure analysis of machine gun barrel 被引量:4
9
作者 Xiaolong Li Lei Mu +1 位作者 Yong Zang Qin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期362-373,共12页
An increase in the use of the gun barrel will cause wear of the inner wall,which reduces the muzzle velocity and the spin rate of the projectile.The off-bore flight attitude and trajectory of the projectile also chang... An increase in the use of the gun barrel will cause wear of the inner wall,which reduces the muzzle velocity and the spin rate of the projectile.The off-bore flight attitude and trajectory of the projectile also change,affecting the shooting power and the accuracy.Exterior ballistic data of a high-speed spinning projectile are required to study the performance change.Therefore,based on the barrel’s accelerated life test,the whole process of projectile shooting is reproduced using numerical simulation technology,and key information on the ballistic performance change at each shooting stage are acquired.Studies have shown that in the later stages of barrel shooting,the accuracy of shooting has not decreased significantly.However,it is found that the angle of attack of the projectile increases as the wear of the barrel increases.The maximum angle of attack reaches 0.106 rad when the number of shots reaches 4300.Meanwhile,elliptical bullet hole has appeared on the target at this shooting stage.Through combining external ballistic theory with simulation results,the primary reason of this phenomenon is found to be a significant decrease in the muzzle spin rate of the projectile.At the end of the barrel life,the projectile muzzle spin rate is 57.5%lower than that of a barrel without wear. 展开更多
关键词 WEAR of the INNER wall ACCELERATED LIFE test Numerical simulation ballistIC performance End of the BARREL LIFE
下载PDF
Ballistic design and testing of a composite armour reinforced by CNTs suitable for armoured vehicles
10
作者 Evangelos Ch.Tsirogiannis Evangelos Daskalakis +2 位作者 Mohamed H.Hassan Abdalla M.Omar Paulo Bartolo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期173-195,共23页
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate... This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate. 展开更多
关键词 Passive armour protection Protective armour ballistic performance Hybrid composites Vehicle protection
下载PDF
Ballistic behavior of boron carbide reinforced AA7075 aluminium alloy using friction stir processing-An experimental study and analytical approach 被引量:1
11
作者 I.SUDHAKAR G.MADHUSUDHAN REDDY K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第1期25-31,共7页
High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Amon... High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Among these alloys, magnesium is self explosive and titanium is costlier, and aluminium is most likely to replace steels. Application of aluminium or its alloys is also thought of as an appropriate replacement in defence field, especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels. Hence most of the investigations have been confined to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation, i.e. tribological properties. The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide, carbides of transition metals and oxides of aluminium using surface modification techniques, such as high energy laser melt treatment, high energy electron beam irradiation and thermal spray process which are based on fusion route. These techniques yield the fusion related problems, such as interfacial reaction, pin holes, shrinkage cavities or voids and other casting related defects, and pave the way to need of an efficient technique which must be based on solid state. Recently developed friction stir processing technique was used in the present investigation for surface modification of AA7075 aluminum alloy, which is an alternative to steels. In the present investigation, 160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill. Subsequently these powders were used to fabricate the surface composites using friction stir processing.Ballistic performance testing as per the military standard(JIS.0108.01) was carried out. In the present work, an analytical method of predicting the ballistic behavior of surface composites was developed. This method was based on energy balance, i.e., the initial energy of impact is same as that of energy absorbed by multi layers. An attempt also has been made to validate the analytical results with the experimental findings. Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interface As the analytical model yields the ballistic performance in the closer proximity of experimentally obtained, it can be considered to be an approximation to evaluate the ballistic performance of targets. 展开更多
关键词 AA7075 aluminium alloy Friction stir processing(FSP) Surface metal matrix composite(SMMC) Boron carbide(B4C) ballistic performance TARGET
下载PDF
Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets 被引量:4
12
作者 Gaurav Nilakantan Steven Nutt 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第3期165-178,共14页
Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, ... Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction. 展开更多
关键词 材料参数 线织物 芳香族 厚度 编织 取向 行为 弹道
下载PDF
Ballistic tests on hot-rolled Ti-6Al-4V plates:Experiments and numerical approaches
13
作者 Alexander Janda Benjamin James Ralph +6 位作者 Yael Demarty Marcel Sorger Stefan Ebenbauer Aude Prestl Ingo Siller Martin Stockinger Helmut Clemens 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期39-53,共15页
Superior ballistic performance and the lightweight character of Ti alloys are considered as main reasons for their use in armour applications against a broad spectrum of ballistic threats,e.g.bullet,fragment or blast ... Superior ballistic performance and the lightweight character of Ti alloys are considered as main reasons for their use in armour applications against a broad spectrum of ballistic threats,e.g.bullet,fragment or blast impact.Because dynamic loading caused by typical penetrators is characterized by high strain rates,only specific test methods allow a closer investigation of the respective material behaviour.In the present study,quasi-static and dynamic compression tests as well as ballistic tests were conducted on a twophase a+βalloy Ti-6Al-4V(in m%)manufactured by hot-rolling.Post-deformation heat treatments,influencing microstructure and mechanical properties were applied in order to compare three different microstructural configurations:as-rolled,mill-annealed and bimodal.While,on the one hand,ballistic tests were employed for the determination of the ballistic limit velocity v_(50),compression tests,on the other hand,delivered essential input parameters for the application of the Johnson-Cook constitutive model in a finite element simulation of the impact event.The comparison of experimental results to simulation results was supplemented by means of microstructural characterization of tested samples with the focus set on the prevalently observed deformation and damage mechanisms,as for example adiabatic shearing. 展开更多
关键词 TI-6AL-4V ballistic performance Split Hopkinson pressure bar FE simulation Adiabatic shear bands Intermetallic phase
下载PDF
Microstructure, Texture, Mechanical and Ballistic Properties Correlation of a Hot Rolled and Peak Aged AA-7017 Alloy Plate at Surface and Centre
14
作者 Pradipta Kumar Jena Kandikattu Siva Kumar +1 位作者 Rajiv Kumar Mandal Ashok Kumar Singh 《Materials Sciences and Applications》 2017年第13期992-1013,共22页
The present work describes microstructure, texture, mechanical and ballistic properties correlation of a hot rolled and peak aged AA-7017 alloy plate at surface and centre. Both the microstructures and textures are di... The present work describes microstructure, texture, mechanical and ballistic properties correlation of a hot rolled and peak aged AA-7017 alloy plate at surface and centre. Both the microstructures and textures are different on the surface and centre of the plate. The surface of the plate shows recrystallized grains and a weak over all texture. The centre of the plate displays elongated grains and a sharp texture. Tensile properties, hardness and impact toughness are evaluated at surface and centre of the plate. It is observed that strength and hardness is high at centre, whereas ductility and impact toughness is more at the surface. Ballistic properties of the plate at centre and surface are measured by impacting against two different 7.62 mm deformable projectiles. The plates impacted on the surface shows better ballistic resistance. Ballistic performance of the plate at surface and centre has been correlated with the microstructure, texture and mechanical properties. 展开更多
关键词 ballistIC performance AA 7017 ALLOY MICROSTRUCTURE TEXTURE Mechanical PROPERTY ballistIC PROPERTY Anisotropy
下载PDF
超高分子量聚乙烯纤维层合板在斜侵彻下的动态响应与失效行为研究
15
作者 周熠 郑冰倩 +2 位作者 王昕 强鹭升 张瑞 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第11期1138-1147,共10页
为了研究弹丸斜入射下超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)纤维层合板的抗侵彻响应,分别在0°、10°与20°的入射角下开展了弹道冲击实验,利用高速摄影捕捉动态响应,并在冲击实验后观察破... 为了研究弹丸斜入射下超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)纤维层合板的抗侵彻响应,分别在0°、10°与20°的入射角下开展了弹道冲击实验,利用高速摄影捕捉动态响应,并在冲击实验后观察破坏形貌.构建了相应的三维有限元计算模型,通过对比实验结果验证了其可靠性,并基于该数值模型,进一步阐明不同入射角下的UHMWPE纤维层合板抗侵彻机理.结果表明:当层合板受到平头弹丸斜侵彻作用时,弹头局部接触所引发的应力集中使得层合板更容易发生强度失效,但由于层合板的等效厚度增加且弹丸偏转所造成的弹体与层合板接触面积增加,使得入射角的影响与弹丸入射速度有关.当入射速度较低时,层合板的抗侵彻性能随着入射角增大而略微减小;而当入射速度远大于弹道极限时,层合板的抗侵彻性能随着入射角增大而增大. 展开更多
关键词 斜侵彻 超高分子量聚乙烯纤维层合板 抗侵彻性能 入射角
下载PDF
一种双级弹射作动筒对抛分离输出特性研究
16
作者 杨文 毛纪银 +3 位作者 杨勇 屠小昌 陈静 胡凡 《火工品》 CAS CSCD 北大核心 2024年第2期14-18,共5页
为满足武器系统低过载对抛分离功能要求,设计了一种对抛式双级弹射作动筒,基于零维内弹道理论建立了对抛式双级弹射作动筒内弹道模型,对其分离输出特性进行了仿真,并对内弹道模型的准确性进行了试验验证。结果表明,对抛式双级弹射作动... 为满足武器系统低过载对抛分离功能要求,设计了一种对抛式双级弹射作动筒,基于零维内弹道理论建立了对抛式双级弹射作动筒内弹道模型,对其分离输出特性进行了仿真,并对内弹道模型的准确性进行了试验验证。结果表明,对抛式双级弹射作动筒内弹道模型准确可靠,压强仿真曲线与实测曲线基本吻合,分离输出参数仿真值与实测值基本一致,误差不超过5%。本研究能够为同类型对抛式双级弹射作动筒的设计提供理论指导。 展开更多
关键词 对抛分离 双级弹射作动筒 内弹道性能 数学模型
下载PDF
身管内膛磨损对弹丸运动规律的影响研究
17
作者 郭张霞 原泽坤 +1 位作者 王大为 张江晨 《火炮发射与控制学报》 北大核心 2024年第4期35-40,54,共7页
火炮发射过程中,高速运动的弹丸会对身管内膛产生磨损,从而导致身管内膛的结构发生改变,直接影响到弹丸的运动特性。针对火炮身管内膛磨损所导致的弹丸运动规律变化的问题,以某大口径火炮为对象,通过建立5种不同内膛损伤程度的身管有限... 火炮发射过程中,高速运动的弹丸会对身管内膛产生磨损,从而导致身管内膛的结构发生改变,直接影响到弹丸的运动特性。针对火炮身管内膛磨损所导致的弹丸运动规律变化的问题,以某大口径火炮为对象,通过建立5种不同内膛损伤程度的身管有限元模型,利用ABAQUS/Explicit有限元软件及其VUAMP子程序,将内弹道方程组与有限元模型进行耦合求解。研究结果表明:随着径向磨损量的增加,弹丸的挤进过程加速,弹丸挤进过程的行程和时间变长,弹丸挤进结束时的速度变大,主要弹道性能如初速和膛压逐渐减小。此研究为深入了解内膛损伤对弹道性能变化规律的影响提供了有益参考,为提高火炮性能及延长其使用寿命提供了有力支持。 展开更多
关键词 内膛损伤 弹丸挤进 ABAQUS子程序 弹道性能
下载PDF
增材制造316L不锈钢球形破片的弹道性能 被引量:1
18
作者 薛浩 王涛 +2 位作者 黄广炎 崔欣雨 韩洪伟 《兵工学报》 EI CAS CSCD 北大核心 2024年第2期395-406,共12页
为探索增材制造316L不锈钢球形破片的弹道性能,采用选择性激光熔化(Selective Laser Melting,SLM)技术制造316L不锈钢材料毛坯,通过机加工、抛光等操作得到了直径12 mm的增材制造316L不锈钢球形破片。开展打印态316L不锈钢材料的显微计... 为探索增材制造316L不锈钢球形破片的弹道性能,采用选择性激光熔化(Selective Laser Melting,SLM)技术制造316L不锈钢材料毛坯,通过机加工、抛光等操作得到了直径12 mm的增材制造316L不锈钢球形破片。开展打印态316L不锈钢材料的显微计算机断层扫描(Computed Tomography,CT)和静动态力学试验研究,获得了打印态316L不锈钢在材料沉积方向的Johnson-Cook(JC)模型参数,进行了增材制造和传统冷轧工艺制造的316L不锈钢球形破片侵彻6 mm厚Q235钢靶的弹道试验。研究结果表明:增材制造球形破片的弹道极限速度比传统冷轧制造破片低2.5%左右,弹道性能有小幅提升,暗示了增材制造工艺用于制造战斗部预制破片的潜力;开展的数值仿真研究获得了与试验结果一致的剪切冲塞穿靶机理,仿真与试验穿靶速度数据比较吻合,弹道极限速度误差仅为1.4%左右,仿真结果也表明JC模型用于描述增材制造316L不锈钢材料穿靶行为的可行性。 展开更多
关键词 球形破片 弹道性能 316L不锈钢 增材制造
下载PDF
防弹头盔选材及结构设计对其防护性能的影响 被引量:1
19
作者 孔鲁鹏 曾浩 +3 位作者 杨波 张哲绎 胡宁 赵丽滨 《河北工业大学学报》 CAS 2024年第2期11-21,共11页
防弹头盔是单兵作战时不可缺少的重要防护装备。防弹头盔的防护性能主要受其选材和结构设计的影响。通过总结国内外防弹头盔的选材,结构设计及对应防护机理的相关研究进展,对目前防弹头盔广泛使用的纤维增强复合材料的纤维类型和织物组... 防弹头盔是单兵作战时不可缺少的重要防护装备。防弹头盔的防护性能主要受其选材和结构设计的影响。通过总结国内外防弹头盔的选材,结构设计及对应防护机理的相关研究进展,对目前防弹头盔广泛使用的纤维增强复合材料的纤维类型和织物组织结构进行了探讨;概述了现有防弹头盔的盔体、紧固和减震等各方面的结构设计,并通过总结测试实验和仿真模拟,多角度分析了其防护性能。考虑到复杂多变的战场环境,未来的防弹头盔的材料研发和结构设计要向兼具高防护性能和轻量化发展,还需集成更多的智能化装备。 展开更多
关键词 防弹头盔 纤维增强复合材料 头盔选材 结构设计 高防护性能和轻量化
下载PDF
芳纶防弹复合材料的影响因素分析研究
20
作者 方心灵 高俊 +2 位作者 许冬梅 吴中伟 姜联东 《高科技纤维与应用》 CAS 2024年第2期54-58,共5页
芳纶防弹复合材料的影响因素较多,本文主要对芳纶展开宽度、纤维布形态、胶粘剂使用年限、上胶工艺以及拉伸强度等影响因素进行分析,并对相应靶片进行了防弹性能测试,分析结果并给出结论:纤维展开的宽度为2.5 mm±0.5 mm时,纤维布... 芳纶防弹复合材料的影响因素较多,本文主要对芳纶展开宽度、纤维布形态、胶粘剂使用年限、上胶工艺以及拉伸强度等影响因素进行分析,并对相应靶片进行了防弹性能测试,分析结果并给出结论:纤维展开的宽度为2.5 mm±0.5 mm时,纤维布形态为UD时,防弹效果较好;胶粘剂满足标准使用期限8年的老化速度,防弹效果没有变化;采取浸胶方式的上胶工艺、控制纤维损伤程度在4%以下时靶片的防弹性能最优。本研究可为芳纶防弹复合材料从业人员提供参考。 展开更多
关键词 芳纶 复合材料 防弹性能 胶粘剂 拉伸强度
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部