In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli- cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson ty...In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli- cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson type inequalities are established, which play an important role in pseudospectral method. The pseudospectral method is applied to a twodimensional singular problem and a problem on axisymmetric domain. The convergence of proposed schemes is established. Numerical results demonstrate the efficiency of the proposed method.展开更多
One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary condit...One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpola- tion can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpola- tion method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金Science and Technology Commission of Shanghai Municipality Grant No.75105118the Shanghai Leading Academic Discipline Project No.T0401the Funds for E-institutes of Shanghai Universities No.E03004
文摘In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli- cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson type inequalities are established, which play an important role in pseudospectral method. The pseudospectral method is applied to a twodimensional singular problem and a problem on axisymmetric domain. The convergence of proposed schemes is established. Numerical results demonstrate the efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 11172192)the College Postgraduate Research and Innovation Project of Jiangsu Province (No. CX10B 029Z)the Nominated Excellent Thesis for PHD Candidates Program of Soochow University (No. 23320957)
文摘One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpola- tion can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpola- tion method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.