为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像...为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。展开更多
文摘为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。