A new measuring method──relative revolution principle,is introduced in dealing with friction moment measurement of a counter. The instrument manufactured based on this principle is efficient, accurate, and easy to o...A new measuring method──relative revolution principle,is introduced in dealing with friction moment measurement of a counter. The instrument manufactured based on this principle is efficient, accurate, and easy to operate, and a continuous dynamic measurement of an absolute friction moment is achieved intelligently. The principle is suitable to the measurement of friction moments of many kinds of elements and some special characteristics, and is of good engineering significance.展开更多
The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differenti...The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human fibroblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/μm, and 1.33 for LET 13.7 keV/μm carbon ions. RBE for a doubling of post-mitotic fibroblasts (PMF) in the population was 2.8 for LET 172 keV/μm, and 1 for LET 13.7 keV/μm carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.展开更多
The present paper develops an approach of relative orbit determination for satellite formation flight.Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative navigatio...The present paper develops an approach of relative orbit determination for satellite formation flight.Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative navigation,and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit.The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design,in which the measurements were transformed to the inertial frame to avoid the linearization error of the observation equation.In addition,the situation of the coarse measurement period(only microwave radar measurements are available)existing was analyzed.The numerical simulation results verify the validity of the navigation approach,and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.展开更多
a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radic...a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.展开更多
Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for ang...Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for angles-only observability was found by using cylindrical dynamics, however, the solution of orbit determination is still not provided. This study develops a relative orbit determination algorithm with the cylindrical dynamics based on differential evolution. Firstly, the relative motion dynamics and line-of-sight measurement model for nearcircular orbit are established in cylindrical coordinate system.Secondly, the observability is qualitatively analyzed by using the dynamics and measurement model where the unobservable geometry is found. Then, the angles-only relative orbit determination problem is modeled into an optimal searching frame and an improved differential evolution algorithm is introduced to solve the problem. Finally, the proposed algorithm is verified and tested by a set of numerical simulations in the context of highEarth and low-Earth cases. The results show that initial relative orbit determination(IROD) solution with an appropriate accuracy in a relative short span is achieved, which can be used to initialize the navigation filter.展开更多
Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory.Baumgratz,Cramer and Plenio established a rigorous framework(BCP framework)for quantifying coherence[Baumgrat...Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory.Baumgratz,Cramer and Plenio established a rigorous framework(BCP framework)for quantifying coherence[Baumgratz T,Cramer M and Plenio M B Phys.Rev.Lett.113140401(2014)].In the present paper,under the BCP framework we provide two classes of coherence measures based on the sandwiched Rényi relative entropy.We also prove that we cannot get a new coherence measure f(C(·))by a function f acting on a given coherence measure C.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique develope...Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique developed in this work to simultaneously detect influential data points and select optimal predictor variables. It is an addition to the body of existing literature in this area of study to both having an alternative to the AIC and Mallow’s Cp Statistic-based RIM as well as conditions of no influence, some sort of influence and perfectly single outlier data point in an entire data set which are proposed in this work. The method is implemented in R by an algorithm that iterates over all data points;deleting data points one at a time while computing BICs and selecting optimal predictors alongside RIMs. From the analyses done using evaporation data to compare the proposed method and the existing methods, the results show that the same data cases selected as having high influences by the two existing methods are also selected by the proposed method. The three methods show same performance;hence the relevance of the BIC-based RIM cannot be undermined.展开更多
Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w...Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w); |w|>1,M is a positive definite matrix and δ is the Dirac matrix measure. Here, L n(·) means the leading coefficient of the orthonormal matrix polynomials Φ n(z;·). Finally, we deduce the asymptotic behavior of Φ n(w;)Φ n(w;Ω)* in the case when M=I.展开更多
We give a definition of relative entropy with respect to a sublinear expectation and establish large deviation principle for the empirical measures for independent random variables under the sublinear expectation.
A closed-form solution to the angles-only initial relative orbit determination(IROD)problem for space rendezvous with non-cooperated target is developed,where a method of hybrid dynamics with the concept of virtual fo...A closed-form solution to the angles-only initial relative orbit determination(IROD)problem for space rendezvous with non-cooperated target is developed,where a method of hybrid dynamics with the concept of virtual formation is introduced to analytically solve the problem.Emphasis is placed on developing the solution based on hybrid dynamics(i.e.,Clohessy-Wiltshire equations and two-body dynamics),obtaining formation geometries that produce relative orbit state observability,and deriving the approximate analytic error covariance for the IROD solution.A standard Monte Carlo simulation system based on two-body dynamics is used to verify the feasibility and evaluate the performance proposed algorithms.The sensitivity of the solution accuracy to the formation geometry,observation numbers is presented and discussed.展开更多
In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurement...In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurements and the elimination of systematic error among the relative measurements have been carded out in this paper. Thus an unified temporal gravity change system with absolute reference has been established. On the basis of this, the crustal subsidence effect on gravity, which belongs to non-tectonic factor, is analyzed and the station displacement corrections are carried out, so that the long-wave disturbance is eliminated. So far our following aims are realized: the advantages of the absolute and relative measurement methods are complementary to each other; the contradiction and environment disturbance are eliminated; the amounts of information are enlarged; the sampling interval of time domain is compressed. In a word, the ability of identifying the tectonic activity process is enhanced. The results show that: there are systematic errors between the two groups of relative measurements and within the data of 10 campaigns ; the uneven local crustal subsidence in the southeast of the study area results in a linear rise of gravity value at 10 stations; they can be corrected by the regression analysis. The maps of revised temporal gravity change can obviously and integrally reflect the Ms=5.0 earthquake in Guye on October 6, 1995.展开更多
Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, ...Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, cutting speed, feed rate and tool material on the maximum drilling temperature was investigated. The drilling parameters were optimized based on multiple performance characteristics in terms of the maximum cutting temperature and tool wear. According to the results, the most influential control factors on the cutting temperatures are found to be particle fraction, feed rate and interaction between the cutting speed and particle content, respectively. The influences of the cutting speed and drill material on the drilling temperature are found to be relatively lower for the used range of parameters. Minimum cutting temperatures are obtained with lower particle fraction and cutting speed, with relatively higher feed rates and carbide tools. The results reveal that optimal combination of the drilling parameters can be used to obtain both minimum cutting temperature and tool wear.展开更多
As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on t...As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on the lever arm effect of the sensor offset from the spacecraft center of mass is proposed.Firstly,the orbital propagation model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame.Secondly,the consensus constraint model for the relative orbit state is constructed by introducing the geometry constraint between the spacecraft,based on which the consensus unscented Kalman filter is designed.Thirdly,the observability analysis is done and the necessary conditions of the sensor offset to make the state observable are obtained.Lastly,digital simulations are conducted to verify the proposed algorithm,where the comparison to the unconstrained case is also done.The results show that the estimated error of the relative position converges very quickly,the location error is smaller than 10m under the condition of 10−3 rad level camera and 5m offset.展开更多
We will build a cubic anvil cell (CAC) apparatus for high-pressure and low-temperature physical property measurements in the synergic extreme condition user facility (SECUF). In this article, we first introduce th...We will build a cubic anvil cell (CAC) apparatus for high-pressure and low-temperature physical property measurements in the synergic extreme condition user facility (SECUF). In this article, we first introduce the operating principle, the development history, and the current status of the CAC apparatus, and subsequently describe the design plan and technical targets for the CAC in SECUF. We will demonstrate the unique advantages of CAC, i.e., excellent pressure homogeneity and large hydrostatic pressure capacity, by summarizing our recent research progresses using CAC. Finally, we conclude by providing some perspectives on the applications of CAC in the related research fields.展开更多
In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital ...In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital synthesizer(DDS)as signal generator is used as the bridge excitation source,and the bridge is automatically balanced by adjusting and measuring the voltage ratio.Using standard resistors,the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100Hz-100kHz.Aiming at the low efficiency of bridge balancing,an iterative balancing algorithm based on the steepest descent method is proposed.In order to suppress the interference caused by the initial phase change and non-integer periodic sampling,the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform(apFFT).Finally,the corresponding measurement system is built and the inductance measurement experiment is carried out.The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%,and the optimal relative measurement uncertainty of the system can reach 9.89×10^(-4)compared with 5×10^(-5)of commercial impedance analyzer.展开更多
In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we es...In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.展开更多
According to the orthodox interpretation of quantum physics, wave-particle duality(WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferomete...According to the orthodox interpretation of quantum physics, wave-particle duality(WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferometers(AI) have so far upheld the principle of WPD, either by the mechanism of the Heisenberg’s position-momentum uncertainty relation or by quantum entanglement. In this paper, we propose and make a systematic quantum mechanical analysis of several schemes of weak-measurement atom interferometer(WM-AI) and compare them with the historical schemes of strongmeasurement atom interferometer(SM-AI), such as Einstein’s recoiling slit and Feynman’s light microscope. As the critical part of these WM-AI setups, a weak-measurement path detector(WM-PD) deliberately interacting with the atomic internal electronic quantum states is designed and used to probe the which-path information of the atom, while only inducing negligible perturbation of the atomic center-of-mass motion. Another instrument that is used to directly interact with the atomic center-of-mass while being insensitive to the internal electronic quantum states is used to monitor the atomic centerof-mass interference pattern. Two typical schemes of WM-PD are considered. The first is the micromaser-cavity path detector, which allows us to probe the spontaneously emitted microwave photon from the incoming Rydberg atom in its excited electronic state and record unanimously the which-path information of the atom. The second is the optical-lattice Bragg-grating path detector, which can split the incoming atom beam into two different directions as determined by the internal electronic state and thus encode the which-path information of the atom into the internal states of the atom. We have used standard quantum mechanics to analyze the evolution of the atomic center-of-mass and internal electronic state wave function by directly solving Schr¨odinger’s equation for the composite atom-electron-photon system in these WM-AIs. We have also compared our analysis with the theoretical and experimental studies that have been presented in the previous literature. The results show that the two sets of instruments can work separately, collectively, and without mutual exclusion to enable simultaneous observation of both wave and particle nature of the atoms to a much higher level than the historical SM-AIs, while avoiding degradation from Heisenberg’s uncertainty relation and quantum entanglement. We have further investigated the space–time evolution of the internal electronic quantum state, as well as the combined atom–detector system and identified the microscopic origin and role of quantum entanglement, as emphasized in numerous previous studies. Based on these physics insights and theoretical analyses, we have proposed several new WM-AI schemes that can help to elucidate the puzzling physics of the WPD of the atoms. The principle of WM-AI scheme and quantum mechanical analyses made in this work can be directly extended to examine the principle of WPD for other massive particles.展开更多
文摘A new measuring method──relative revolution principle,is introduced in dealing with friction moment measurement of a counter. The instrument manufactured based on this principle is efficient, accurate, and easy to operate, and a continuous dynamic measurement of an absolute friction moment is achieved intelligently. The principle is suitable to the measurement of friction moments of many kinds of elements and some special characteristics, and is of good engineering significance.
基金the"Xi Bu Zhi Guang"Project of Chinese Academy of Sciences(No.O606180XBO)
文摘The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human fibroblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/μm, and 1.33 for LET 13.7 keV/μm carbon ions. RBE for a doubling of post-mitotic fibroblasts (PMF) in the population was 2.8 for LET 172 keV/μm, and 1 for LET 13.7 keV/μm carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.
基金Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)
文摘The present paper develops an approach of relative orbit determination for satellite formation flight.Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative navigation,and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit.The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design,in which the measurements were transformed to the inertial frame to avoid the linearization error of the observation equation.In addition,the situation of the coarse measurement period(only microwave radar measurements are available)existing was analyzed.The numerical simulation results verify the validity of the navigation approach,and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.
文摘a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.
基金supported by the National Natural Science Foundation of China (12272168)the Foundation of Science and Technology on Space Intelligent Control Laboratory (HTKJ2023KL502015)。
文摘Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for angles-only observability was found by using cylindrical dynamics, however, the solution of orbit determination is still not provided. This study develops a relative orbit determination algorithm with the cylindrical dynamics based on differential evolution. Firstly, the relative motion dynamics and line-of-sight measurement model for nearcircular orbit are established in cylindrical coordinate system.Secondly, the observability is qualitatively analyzed by using the dynamics and measurement model where the unobservable geometry is found. Then, the angles-only relative orbit determination problem is modeled into an optimal searching frame and an improved differential evolution algorithm is introduced to solve the problem. Finally, the proposed algorithm is verified and tested by a set of numerical simulations in the context of highEarth and low-Earth cases. The results show that initial relative orbit determination(IROD) solution with an appropriate accuracy in a relative short span is achieved, which can be used to initialize the navigation filter.
基金Project supported by the China Scholarship Council(Grant No.201806305050)
文摘Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory.Baumgratz,Cramer and Plenio established a rigorous framework(BCP framework)for quantifying coherence[Baumgratz T,Cramer M and Plenio M B Phys.Rev.Lett.113140401(2014)].In the present paper,under the BCP framework we provide two classes of coherence measures based on the sandwiched Rényi relative entropy.We also prove that we cannot get a new coherence measure f(C(·))by a function f acting on a given coherence measure C.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.
文摘Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique developed in this work to simultaneously detect influential data points and select optimal predictor variables. It is an addition to the body of existing literature in this area of study to both having an alternative to the AIC and Mallow’s Cp Statistic-based RIM as well as conditions of no influence, some sort of influence and perfectly single outlier data point in an entire data set which are proposed in this work. The method is implemented in R by an algorithm that iterates over all data points;deleting data points one at a time while computing BICs and selecting optimal predictors alongside RIMs. From the analyses done using evaporation data to compare the proposed method and the existing methods, the results show that the same data cases selected as having high influences by the two existing methods are also selected by the proposed method. The three methods show same performance;hence the relevance of the BIC-based RIM cannot be undermined.
文摘Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w); |w|>1,M is a positive definite matrix and δ is the Dirac matrix measure. Here, L n(·) means the leading coefficient of the orthonormal matrix polynomials Φ n(z;·). Finally, we deduce the asymptotic behavior of Φ n(w;)Φ n(w;Ω)* in the case when M=I.
基金supported by the National Natural Science Foundation of China(11171262)the Specialized Research Fund for the Doctoral Program of Higher Education (200804860048)
文摘We give a definition of relative entropy with respect to a sublinear expectation and establish large deviation principle for the empirical measures for independent random variables under the sublinear expectation.
基金the Natural Science Foundation of China(11802119)the National Postdoctoral Program for Innovative Talents(BX201700304)Fundamental Research Funds for Central Universities(NT2019023).
文摘A closed-form solution to the angles-only initial relative orbit determination(IROD)problem for space rendezvous with non-cooperated target is developed,where a method of hybrid dynamics with the concept of virtual formation is introduced to analytically solve the problem.Emphasis is placed on developing the solution based on hybrid dynamics(i.e.,Clohessy-Wiltshire equations and two-body dynamics),obtaining formation geometries that produce relative orbit state observability,and deriving the approximate analytic error covariance for the IROD solution.A standard Monte Carlo simulation system based on two-body dynamics is used to verify the feasibility and evaluate the performance proposed algorithms.The sensitivity of the solution accuracy to the formation geometry,observation numbers is presented and discussed.
基金National Natural Science Foundation of China (49974019, 40574020, 10371012).
文摘In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurements and the elimination of systematic error among the relative measurements have been carded out in this paper. Thus an unified temporal gravity change system with absolute reference has been established. On the basis of this, the crustal subsidence effect on gravity, which belongs to non-tectonic factor, is analyzed and the station displacement corrections are carried out, so that the long-wave disturbance is eliminated. So far our following aims are realized: the advantages of the absolute and relative measurement methods are complementary to each other; the contradiction and environment disturbance are eliminated; the amounts of information are enlarged; the sampling interval of time domain is compressed. In a word, the ability of identifying the tectonic activity process is enhanced. The results show that: there are systematic errors between the two groups of relative measurements and within the data of 10 campaigns ; the uneven local crustal subsidence in the southeast of the study area results in a linear rise of gravity value at 10 stations; they can be corrected by the regression analysis. The maps of revised temporal gravity change can obviously and integrally reflect the Ms=5.0 earthquake in Guye on October 6, 1995.
文摘Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, cutting speed, feed rate and tool material on the maximum drilling temperature was investigated. The drilling parameters were optimized based on multiple performance characteristics in terms of the maximum cutting temperature and tool wear. According to the results, the most influential control factors on the cutting temperatures are found to be particle fraction, feed rate and interaction between the cutting speed and particle content, respectively. The influences of the cutting speed and drill material on the drilling temperature are found to be relatively lower for the used range of parameters. Minimum cutting temperatures are obtained with lower particle fraction and cutting speed, with relatively higher feed rates and carbide tools. The results reveal that optimal combination of the drilling parameters can be used to obtain both minimum cutting temperature and tool wear.
基金supported in part by the Natural Science Foundation of China(11802119)Science and Technology on Aerospace Flight Dynamics Laboratory(6142210200306)Foundation of Science and Technology on Space Intelligent Control Laboratory(6142208200303)。
文摘As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on the lever arm effect of the sensor offset from the spacecraft center of mass is proposed.Firstly,the orbital propagation model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame.Secondly,the consensus constraint model for the relative orbit state is constructed by introducing the geometry constraint between the spacecraft,based on which the consensus unscented Kalman filter is designed.Thirdly,the observability analysis is done and the necessary conditions of the sensor offset to make the state observable are obtained.Lastly,digital simulations are conducted to verify the proposed algorithm,where the comparison to the unconstrained case is also done.The results show that the estimated error of the relative position converges very quickly,the location error is smaller than 10m under the condition of 10−3 rad level camera and 5m offset.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574377)the State Key Development Program for Basic Research of China(Grant Nos.2018YFA0305700 and 2014CB921500)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH013)the JSPS KAKENHI(Grant No.15H03681)
文摘We will build a cubic anvil cell (CAC) apparatus for high-pressure and low-temperature physical property measurements in the synergic extreme condition user facility (SECUF). In this article, we first introduce the operating principle, the development history, and the current status of the CAC apparatus, and subsequently describe the design plan and technical targets for the CAC in SECUF. We will demonstrate the unique advantages of CAC, i.e., excellent pressure homogeneity and large hydrostatic pressure capacity, by summarizing our recent research progresses using CAC. Finally, we conclude by providing some perspectives on the applications of CAC in the related research fields.
基金National Key Research and Development Plan Project(No.2020YFB2010800)National Natural Science Foundation of China(Nos.61905175,51775377,61971307)+4 种基金Fok Ying Tung Education Foundation(No.171055)China Postdoctoral Science Foundation(No.2020M680878)Guangdong Province Key Research and Development Plan Project(No.2020B0404030001)Tianjin Science and Technology Plan Project(No.20YDTPJC01660)Project of Foreign Affairs Committee of China Aviation Development Sichuan Gas Turbine Research Institute(Nos.GJCZ-2020-0040,GJCZ-2020-0041)。
文摘In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital synthesizer(DDS)as signal generator is used as the bridge excitation source,and the bridge is automatically balanced by adjusting and measuring the voltage ratio.Using standard resistors,the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100Hz-100kHz.Aiming at the low efficiency of bridge balancing,an iterative balancing algorithm based on the steepest descent method is proposed.In order to suppress the interference caused by the initial phase change and non-integer periodic sampling,the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform(apFFT).Finally,the corresponding measurement system is built and the inductance measurement experiment is carried out.The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%,and the optimal relative measurement uncertainty of the system can reach 9.89×10^(-4)compared with 5×10^(-5)of commercial impedance analyzer.
文摘In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA 0306200)the National Natural Science Foundation of China(Grant No.11434017)the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06C594)
文摘According to the orthodox interpretation of quantum physics, wave-particle duality(WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferometers(AI) have so far upheld the principle of WPD, either by the mechanism of the Heisenberg’s position-momentum uncertainty relation or by quantum entanglement. In this paper, we propose and make a systematic quantum mechanical analysis of several schemes of weak-measurement atom interferometer(WM-AI) and compare them with the historical schemes of strongmeasurement atom interferometer(SM-AI), such as Einstein’s recoiling slit and Feynman’s light microscope. As the critical part of these WM-AI setups, a weak-measurement path detector(WM-PD) deliberately interacting with the atomic internal electronic quantum states is designed and used to probe the which-path information of the atom, while only inducing negligible perturbation of the atomic center-of-mass motion. Another instrument that is used to directly interact with the atomic center-of-mass while being insensitive to the internal electronic quantum states is used to monitor the atomic centerof-mass interference pattern. Two typical schemes of WM-PD are considered. The first is the micromaser-cavity path detector, which allows us to probe the spontaneously emitted microwave photon from the incoming Rydberg atom in its excited electronic state and record unanimously the which-path information of the atom. The second is the optical-lattice Bragg-grating path detector, which can split the incoming atom beam into two different directions as determined by the internal electronic state and thus encode the which-path information of the atom into the internal states of the atom. We have used standard quantum mechanics to analyze the evolution of the atomic center-of-mass and internal electronic state wave function by directly solving Schr¨odinger’s equation for the composite atom-electron-photon system in these WM-AIs. We have also compared our analysis with the theoretical and experimental studies that have been presented in the previous literature. The results show that the two sets of instruments can work separately, collectively, and without mutual exclusion to enable simultaneous observation of both wave and particle nature of the atoms to a much higher level than the historical SM-AIs, while avoiding degradation from Heisenberg’s uncertainty relation and quantum entanglement. We have further investigated the space–time evolution of the internal electronic quantum state, as well as the combined atom–detector system and identified the microscopic origin and role of quantum entanglement, as emphasized in numerous previous studies. Based on these physics insights and theoretical analyses, we have proposed several new WM-AI schemes that can help to elucidate the puzzling physics of the WPD of the atoms. The principle of WM-AI scheme and quantum mechanical analyses made in this work can be directly extended to examine the principle of WPD for other massive particles.