A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative...A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.展开更多
Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were in...Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were investigated using a central composite design.Preliminary results showed that sodium-isopropyl-xanthate(SIPX)and O-isopropyl-N-ethyl-thionocarbamate(IPETC)were found to be the most efficient collectors in the presence of lime as the pH regulator.The effects of dosage of collectors(SIPX and IPETC)and the dosage of methyl-isobutyl-carbonyl(MIBC)as frother on the separation efficiency were evaluated at different pH levels.Based on the analysis of variance(ANOVA),the interaction effects of the collector−pH and collector−frother were significant for the separation efficiency.At the low level of collector dosage,increasing pH from 9 to 11 enhanced copper separation efficiency from 81%to 86%for IPETC and from 77%to 86%for SIPX.Results of ANOVA showed that the maximum copper separation efficiency(88.7%)was obtained at the dosages of 8.6 g/t SIPX,7 g/t IPETC and 20 g/t MIBC at pH 11.Finally,it was concluded that a mixture of SIPX and IPETC collectors was more suitable to treat highly clayey sulphide ores.展开更多
Effects of temperature, salinity and light intensity on growth rates of Gracilaria lichenoides and G. tenuistipitata var. liui Zhang et Xia were tested. Eight to ten levels of each factor were first tested separately....Effects of temperature, salinity and light intensity on growth rates of Gracilaria lichenoides and G. tenuistipitata var. liui Zhang et Xia were tested. Eight to ten levels of each factor were first tested separately. The best growth rate was obtained under the conditions of 32℃, 30 and 240 μmol/(m^2·s) for G. lichenoides, and 24℃, 20 and 200 μmol/(m^2·s) for G. tenuistipitata, respectively. Then a uniform design was used to evaluate the optimal combinations of the three factors. The best conditions for the highest daily specific growth rates (% increase in wet weight) are determined to be 31.30℃, 32.10, and 287.23 lamol/(m^2·s) for G. lichenoides (16.26%/d), and 25.38℃, 21.10, and 229.07 lamol/(m^2·s) for G tenuistipitata (14.83%/d), respectively.展开更多
The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take ac...The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take account of the effects of conductivity anisotropy, nonstraightness, and aspect ratio of the CNT additives on the conductivity enhancement of the composite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.展开更多
Global change will lead to increases in regional precipitation and nitrogen(N) deposition in the semi-arid grasslands of northern China. We investigated the responses of vegetation carbon(C) pools to simulated pre...Global change will lead to increases in regional precipitation and nitrogen(N) deposition in the semi-arid grasslands of northern China. We investigated the responses of vegetation carbon(C) pools to simulated precipitation and N deposition increases through field experiments in a typical steppe in Inner Mongolia. The treatments included NH4NO3 addition at concentrations of 0(CK), 5(LN, low nitrogen), 10(middle nitrogen, MN), and 20(HN,high nitrogen)(g m^(-2)a^(-1)) with and without water. After three consecutive years of treatment, from 2010 to 2012,water addition did not significantly change the size of the total vegetation C pools, but it significantly decreased the ratio of root:shoot(R:S)(P = 0.05) relative to controls. By contrast, N addition significantly increased the total vegetation C pools. The C pools in the LN, MN and HN treatments increased by 22, 39 and 44 %, respectively. MN produced the largest effect among the N concentrations,although differences between N-added treatments were not significant(P ? 0.05). N addition significantly reduced the ratio of root:shoot(R:S)(P = 0.03). However, there were no significant interactive effects of water and N addition on the vegetation C pools.展开更多
Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study ar...Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study area to investigate the effects of different initial moisture contents and dicranopteris linearis root weight densities,as well as their interactions on disintegration in orthogonal test method.The results showed that the rate of soil disintegration decreased as a linear function of the initial moisture content.The soil disintegration rate tended to rise and then fall as the root weight density increased,reflecting an optimum root weight density of 0.75-1.00 g/100 cm3.The incorporation of dicranopteris linearis roots was most effective for soil consolidation in the shallow layers of soil.In addition,the disintegration rate of the collapsing-wall soils increases as the soil layer deepened.The dicranopteris linearis root system and initial moisture content had an interactive effect that was more pronounced in deeper soils.However,the combined effect of these processes was always dominated by the initial moisture content.Moderate initial soil moisture content(0.20-0.24 g/g)and the addition of a high root density in dicranopteris linearis(0.75-1.00 g/100 cm3)were the optimal combinations that reduced the disintegration rate.In conclusion,maintaining a suitable natural moisture content in collapsing-wall soils and taking measures that use plants to consolidate soil can effectively prevent and control the occurrence of Benggang erosion.The results of this study provided further insight into the factors that influence soil disintegration and offered a scientific basis for soil erosion management in the southern China.展开更多
The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dim...The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal.展开更多
To gain a better understanding of the anticancer effects of hydroxyapatite (HAP) nanoparticles in vivo and in vitro, the effects of the interaction of HAP nanoparticles with hepatoma cells were explored. HAP nanopar...To gain a better understanding of the anticancer effects of hydroxyapatite (HAP) nanoparticles in vivo and in vitro, the effects of the interaction of HAP nanoparticles with hepatoma cells were explored. HAP nanoparticles were prepared by homogeneous precipitation and characterized by laser particle analysis and transmission electron microscopy (TEM). HAP nanoparticles were observed to be uniformly distributed, with rod-like shapes and diameters in the range of 42.1-87.1 nm. Overnight attached, suspended, and proliferating Bel-7402 cells were incubated with HAP nanoparticles. Inverted microscopy observation revealed that HAP nanoparticles with a cell membrane showed good adsorption. TEM demonstrated that HAP nanoparticles were present on the surface of cells, continuously taken up by cells through endocytosis, and transported in vesicles close to the nucleus. Fluorescence microscopy showed that the concentrations of intracellular Ca2+ labeled with Fluo-3 calcium fluorescent probe were significantly enhanced. In addition, inverted microscopy observation revealed that suspended cells treated with HAP nanoparticles did not adhere to the culture bottle, resulting in cell death. After the overnight attached cells were treated with HAP nanoparticles for 96 h with increasing doses of HAP nanoparticles, inverted microscopy observation revealed that cell proliferation was slowed and ceU-ceU adhesion was weakened. Feulgen staining and image analysis indicated that the nuclear DNA content of the cells was markedly reduced, and argyrophilic nucleolar organizer region (AgNOR) staining and image analysis indicated that the number of AgNORs was significantly decreased. Therefore, hepatoma cells brought about the adsorption, uptake, transport and degradation of HAP nanoparticles. In addition, HAP nanoparticles affected hepatoma cells with regard to cell-cell adhesion, cell and extracellular matrix adhesion, and DNA and protein synthesis; thus inhibiting cell proliferation. This understanding of the effects of interaction between HAP nanoparticles and hepatoma cells is useful for further study of the anticancer mechanisms of HAP nanoparticles.展开更多
Taking the yield in the second group of Guizhou silage maize regional test in 2019 as data information, 8 experimental sites and 12 silage maize varieties as experimental objects, the interaction effect between gene a...Taking the yield in the second group of Guizhou silage maize regional test in 2019 as data information, 8 experimental sites and 12 silage maize varieties as experimental objects, the interaction effect between gene and environment was analyzed by using AMMI model. The results showed that the average fresh weight yield of each variety was 3 199.5~3 976.6 kg/667m^(2), among them, 5 varieties had an increase in the yield. Variety variation accounted for 10.51% of the total variation;experimental site variation accounted for 63.22% of the total variation;interaction effect variation between gene and environment accounted for 26.28% of the total variation;IPCA1 and IPCA2 variation accounted for 50.7% and 31.2% of the interaction variation, respectively;IPCA3 variation accounted for 7.25% of the interaction variation. g_4, g_8, g_9, g_10, g_11 and g_12 had better adaptability to e_1, e_2, e_6 and e_7;while g_1, g_2, g_3, g_5, g_6 and g_7 had better adaptability to e_3, e_4, e_5 and e_8. In consideration of yield, g_1(Huinongqing 2) and g_9(Xinyu 666) were silage maize varieties with high and stable yield;g_3(Hemuyu 905), g_8(Wuhuayu 3) and g_11(Liangdu 191) had general stability, and their yield was higher than that of the control;g_12(Jinduyu 999) had the worst stability and low yield.展开更多
Air pollution has ever become a global major public health problem.Previous studies showed that air pollution is associated with excessive mortality and morbidity of respiratory disease[1-2].The extreme weather temper...Air pollution has ever become a global major public health problem.Previous studies showed that air pollution is associated with excessive mortality and morbidity of respiratory disease[1-2].The extreme weather temperature can impact human health and the thermal stresses can lead not only to direct deaths and illnesses,but also to aggravation of respiratory disease[3-4].Though the independent展开更多
This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The rela...This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario II of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.展开更多
It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the ...It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.展开更多
Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remai...Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remain negligible if the holes are placed sufficiently far from each other.In an effort to understand hole interaction effects on heat conduction and thermal stress,we consider the case when two circular holes are embedded in an infinite elastic material and use complex variable methods together with numerical analysis to obtain solutions describing temperature and elastic fields in the vicinity of the two circular holes.The results indicate that the interaction effects on temperature distribution and stress strongly depend on the relative size of the two holes and the distance placed between them but not on the actual size of the holes.展开更多
The resistivity of Hg<sub>0.89</sub>Mn<sub>0.11</sub>Te has been measured by the superconducting quantum interference device magnetometer in the temperature range from 5 to 200 K under the appl...The resistivity of Hg<sub>0.89</sub>Mn<sub>0.11</sub>Te has been measured by the superconducting quantum interference device magnetometer in the temperature range from 5 to 200 K under the applied magnetic field of 1, 2, 4 and 6.5 Tesla, respectively, compared with that of no-magnetic field. The results show that the resistivity increases with increase applied magnetic field at higher temperature from 80 to 200 K, but decreases at lower temperature from 5 to 25 K. There exists a transitive range from 25 to 80 K, where the variation of the resistivity shows different tendencies depending on the strength of magnetic field. Maximum difference of resistivity under 6.5 Tesla from that without magnetic field in the temperature range from 30 to 200 K is only about 5 Ω·cm, but it increases up to 3 orders of magnitude at 5 K. The analysis shows that the variation of resistivity of Hg<sub>0.89</sub>Mn<sub>0.11</sub>Te under the magnetic field is the algebraic sum of the transverse direction magnetoresistance effect and the sp-d exchange interaction effect. TDRME plays major role in the high temperature range. However, with the decrease of temperature, the effect of sp-d EI on the resistivity gradually exceeds that of the transverse direction magnetoresistance effect through the transitive range, and becomes the dominant effect in the temperature range from 5 to 25 K, which leads to the dramatic decrease of resistivity.展开更多
Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when t...Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.展开更多
In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear respon...In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte.Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework.展开更多
The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive param...The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter q. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor RAA and the parameter of q at intermediate jet energy.展开更多
The stabilities of the complexes of three pyridine-like ligands with M(II)(ATP)^(2-) and M(II)(M=Ni,Co)were studied by spectrophotometry and by comparing the stability constants of the ternary complexes with these of ...The stabilities of the complexes of three pyridine-like ligands with M(II)(ATP)^(2-) and M(II)(M=Ni,Co)were studied by spectrophotometry and by comparing the stability constants of the ternary complexes with these of the binary complexes.A stacking interaction between the pyridine ring and the purine ring of ATP is indicated.The general existence of the stacking interaction encourages us to interpret the antitumor mechanism of a new class of antitumor drugs.展开更多
In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result ...In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte- Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the ~eometry factor are the same.展开更多
We investigate the effects of pure Dzyaloshinskii Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states |φ±〉 = (|00...We investigate the effects of pure Dzyaloshinskii Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states |φ±〉 = (|00) ± |11〉)/√2 and |ψ±〉 = (|01) ±|10〉)/√2, respectively. It is found that if the system is initially in the state p1(0) = |φ+〉〈φ+1, the entanglement can obtain its maximum when the DM interaction vector D is in the plane of XOZ and magnetic field B = By with the infinite time t, moreover the entanglement is independent of By and t when By is perpendicular to D. In addition, we obtain similar results when the system is initially in the states p2(0) = |φ-〉〈φ-| or p3 (0) = |ψ+〉〈ψ+1. However, we find that if the system is initially in the state P4 (0) = |ψ-〉〈ψ-l, the entanglement can obtain its maximum for infinite t, when the DM vector is in the plane ofYOZ, XOZ, or XOY, with the magnetic field parallel to X, Y, or Z axis, respectively. Moreover, when the axial B is perpendicular to D for the initial state p4(O), the negativity oscillates with time t and reaches a stable value, the larger the value of B is, the greater the stable value is, and the shorter the oscillation time of the negativity is. Thus we can adjust the direction and value of the external magnetic field to obtain the maximal entanglement, and avoid the adverse effects of external environment in some initial state. This is feasible within the cun'ent experimental technology.展开更多
基金This work was supported by Chinese National Programs for High Technology Research and Development(973 Program)(No.2004CB117306).
文摘A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.
文摘Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were investigated using a central composite design.Preliminary results showed that sodium-isopropyl-xanthate(SIPX)and O-isopropyl-N-ethyl-thionocarbamate(IPETC)were found to be the most efficient collectors in the presence of lime as the pH regulator.The effects of dosage of collectors(SIPX and IPETC)and the dosage of methyl-isobutyl-carbonyl(MIBC)as frother on the separation efficiency were evaluated at different pH levels.Based on the analysis of variance(ANOVA),the interaction effects of the collector−pH and collector−frother were significant for the separation efficiency.At the low level of collector dosage,increasing pH from 9 to 11 enhanced copper separation efficiency from 81%to 86%for IPETC and from 77%to 86%for SIPX.Results of ANOVA showed that the maximum copper separation efficiency(88.7%)was obtained at the dosages of 8.6 g/t SIPX,7 g/t IPETC and 20 g/t MIBC at pH 11.Finally,it was concluded that a mixture of SIPX and IPETC collectors was more suitable to treat highly clayey sulphide ores.
基金Supported by the 908 Special Program (908-02-04-07)the National Basic Research Program of China (973 Program, No. 2006CB400608)K. C. Wong Magna Fund in Ningbo University
文摘Effects of temperature, salinity and light intensity on growth rates of Gracilaria lichenoides and G. tenuistipitata var. liui Zhang et Xia were tested. Eight to ten levels of each factor were first tested separately. The best growth rate was obtained under the conditions of 32℃, 30 and 240 μmol/(m^2·s) for G. lichenoides, and 24℃, 20 and 200 μmol/(m^2·s) for G. tenuistipitata, respectively. Then a uniform design was used to evaluate the optimal combinations of the three factors. The best conditions for the highest daily specific growth rates (% increase in wet weight) are determined to be 31.30℃, 32.10, and 287.23 lamol/(m^2·s) for G. lichenoides (16.26%/d), and 25.38℃, 21.10, and 229.07 lamol/(m^2·s) for G tenuistipitata (14.83%/d), respectively.
文摘The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take account of the effects of conductivity anisotropy, nonstraightness, and aspect ratio of the CNT additives on the conductivity enhancement of the composite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.
基金supported by the National Natural Science Foundation of China(Nos.4137308441330528+1 种基金and41203054)the Special Fund for Agro-scientific Research in the Public Interest(No.201203012)
文摘Global change will lead to increases in regional precipitation and nitrogen(N) deposition in the semi-arid grasslands of northern China. We investigated the responses of vegetation carbon(C) pools to simulated precipitation and N deposition increases through field experiments in a typical steppe in Inner Mongolia. The treatments included NH4NO3 addition at concentrations of 0(CK), 5(LN, low nitrogen), 10(middle nitrogen, MN), and 20(HN,high nitrogen)(g m^(-2)a^(-1)) with and without water. After three consecutive years of treatment, from 2010 to 2012,water addition did not significantly change the size of the total vegetation C pools, but it significantly decreased the ratio of root:shoot(R:S)(P = 0.05) relative to controls. By contrast, N addition significantly increased the total vegetation C pools. The C pools in the LN, MN and HN treatments increased by 22, 39 and 44 %, respectively. MN produced the largest effect among the N concentrations,although differences between N-added treatments were not significant(P ? 0.05). N addition significantly reduced the ratio of root:shoot(R:S)(P = 0.03). However, there were no significant interactive effects of water and N addition on the vegetation C pools.
基金supported by the Special Projects of the Central Government Guiding Local Science and Technology Development in China(Guike.ZY21195022)the National Natural Science Foundation of China(No.42007055 and 42107350)。
文摘Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study area to investigate the effects of different initial moisture contents and dicranopteris linearis root weight densities,as well as their interactions on disintegration in orthogonal test method.The results showed that the rate of soil disintegration decreased as a linear function of the initial moisture content.The soil disintegration rate tended to rise and then fall as the root weight density increased,reflecting an optimum root weight density of 0.75-1.00 g/100 cm3.The incorporation of dicranopteris linearis roots was most effective for soil consolidation in the shallow layers of soil.In addition,the disintegration rate of the collapsing-wall soils increases as the soil layer deepened.The dicranopteris linearis root system and initial moisture content had an interactive effect that was more pronounced in deeper soils.However,the combined effect of these processes was always dominated by the initial moisture content.Moderate initial soil moisture content(0.20-0.24 g/g)and the addition of a high root density in dicranopteris linearis(0.75-1.00 g/100 cm3)were the optimal combinations that reduced the disintegration rate.In conclusion,maintaining a suitable natural moisture content in collapsing-wall soils and taking measures that use plants to consolidate soil can effectively prevent and control the occurrence of Benggang erosion.The results of this study provided further insight into the factors that influence soil disintegration and offered a scientific basis for soil erosion management in the southern China.
基金supported by the National Natural Science Foundation of China(No.51175246)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the NUAA Research Funding(No.NP2013306)
文摘The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal.
基金Funded by the National Natural Science Foundation of China(Nos.81190133,51172171 and 51002109)the National Natural Science Foundation of Hubei Province((No.2013CFB354)the Excellent Youth Innovative Research Team Foundation and Talents Project of Hubei Polytechnic University(No.13xtz01)
文摘To gain a better understanding of the anticancer effects of hydroxyapatite (HAP) nanoparticles in vivo and in vitro, the effects of the interaction of HAP nanoparticles with hepatoma cells were explored. HAP nanoparticles were prepared by homogeneous precipitation and characterized by laser particle analysis and transmission electron microscopy (TEM). HAP nanoparticles were observed to be uniformly distributed, with rod-like shapes and diameters in the range of 42.1-87.1 nm. Overnight attached, suspended, and proliferating Bel-7402 cells were incubated with HAP nanoparticles. Inverted microscopy observation revealed that HAP nanoparticles with a cell membrane showed good adsorption. TEM demonstrated that HAP nanoparticles were present on the surface of cells, continuously taken up by cells through endocytosis, and transported in vesicles close to the nucleus. Fluorescence microscopy showed that the concentrations of intracellular Ca2+ labeled with Fluo-3 calcium fluorescent probe were significantly enhanced. In addition, inverted microscopy observation revealed that suspended cells treated with HAP nanoparticles did not adhere to the culture bottle, resulting in cell death. After the overnight attached cells were treated with HAP nanoparticles for 96 h with increasing doses of HAP nanoparticles, inverted microscopy observation revealed that cell proliferation was slowed and ceU-ceU adhesion was weakened. Feulgen staining and image analysis indicated that the nuclear DNA content of the cells was markedly reduced, and argyrophilic nucleolar organizer region (AgNOR) staining and image analysis indicated that the number of AgNORs was significantly decreased. Therefore, hepatoma cells brought about the adsorption, uptake, transport and degradation of HAP nanoparticles. In addition, HAP nanoparticles affected hepatoma cells with regard to cell-cell adhesion, cell and extracellular matrix adhesion, and DNA and protein synthesis; thus inhibiting cell proliferation. This understanding of the effects of interaction between HAP nanoparticles and hepatoma cells is useful for further study of the anticancer mechanisms of HAP nanoparticles.
基金Supported by National Modern Agricultural Industrial Technology System。
文摘Taking the yield in the second group of Guizhou silage maize regional test in 2019 as data information, 8 experimental sites and 12 silage maize varieties as experimental objects, the interaction effect between gene and environment was analyzed by using AMMI model. The results showed that the average fresh weight yield of each variety was 3 199.5~3 976.6 kg/667m^(2), among them, 5 varieties had an increase in the yield. Variety variation accounted for 10.51% of the total variation;experimental site variation accounted for 63.22% of the total variation;interaction effect variation between gene and environment accounted for 26.28% of the total variation;IPCA1 and IPCA2 variation accounted for 50.7% and 31.2% of the interaction variation, respectively;IPCA3 variation accounted for 7.25% of the interaction variation. g_4, g_8, g_9, g_10, g_11 and g_12 had better adaptability to e_1, e_2, e_6 and e_7;while g_1, g_2, g_3, g_5, g_6 and g_7 had better adaptability to e_3, e_4, e_5 and e_8. In consideration of yield, g_1(Huinongqing 2) and g_9(Xinyu 666) were silage maize varieties with high and stable yield;g_3(Hemuyu 905), g_8(Wuhuayu 3) and g_11(Liangdu 191) had general stability, and their yield was higher than that of the control;g_12(Jinduyu 999) had the worst stability and low yield.
基金supported by the Gong-Yi Program of China Meteorological Administration(GYHY201106034)National Natural Science Foundation of China(41075103)
文摘Air pollution has ever become a global major public health problem.Previous studies showed that air pollution is associated with excessive mortality and morbidity of respiratory disease[1-2].The extreme weather temperature can impact human health and the thermal stresses can lead not only to direct deaths and illnesses,but also to aggravation of respiratory disease[3-4].Though the independent
基金Project supported by the National Natural Science Foundation of China (Grant No 10085001), and in part the U.S. Department of Energy (Contract No W-31-109-ENG-38).
文摘This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario II of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.
基金the support of Thousand Talents Programthe National Natural Science Foundation of China(51479114)special fund for Marine Renewable Energy Project(GHME2014ZC01)
文摘It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.
基金the National Natural Science Foundation of China(No.11902116)the China Postdoctoral Science Foundation(No.2020M671313)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN 155112)。
文摘Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remain negligible if the holes are placed sufficiently far from each other.In an effort to understand hole interaction effects on heat conduction and thermal stress,we consider the case when two circular holes are embedded in an infinite elastic material and use complex variable methods together with numerical analysis to obtain solutions describing temperature and elastic fields in the vicinity of the two circular holes.The results indicate that the interaction effects on temperature distribution and stress strongly depend on the relative size of the two holes and the distance placed between them but not on the actual size of the holes.
基金Supported by the National Natural Science Foundation of China(No.50336040)
文摘The resistivity of Hg<sub>0.89</sub>Mn<sub>0.11</sub>Te has been measured by the superconducting quantum interference device magnetometer in the temperature range from 5 to 200 K under the applied magnetic field of 1, 2, 4 and 6.5 Tesla, respectively, compared with that of no-magnetic field. The results show that the resistivity increases with increase applied magnetic field at higher temperature from 80 to 200 K, but decreases at lower temperature from 5 to 25 K. There exists a transitive range from 25 to 80 K, where the variation of the resistivity shows different tendencies depending on the strength of magnetic field. Maximum difference of resistivity under 6.5 Tesla from that without magnetic field in the temperature range from 30 to 200 K is only about 5 Ω·cm, but it increases up to 3 orders of magnitude at 5 K. The analysis shows that the variation of resistivity of Hg<sub>0.89</sub>Mn<sub>0.11</sub>Te under the magnetic field is the algebraic sum of the transverse direction magnetoresistance effect and the sp-d exchange interaction effect. TDRME plays major role in the high temperature range. However, with the decrease of temperature, the effect of sp-d EI on the resistivity gradually exceeds that of the transverse direction magnetoresistance effect through the transitive range, and becomes the dominant effect in the temperature range from 5 to 25 K, which leads to the dramatic decrease of resistivity.
基金supported by the National Natural Science Foundation of China (Nos. 10972072, 50679022, and 10872052)National Basic Research Program of China (No. 2007CB714104)the state Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (No. 2009585912)
文摘Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174196 and 91130012)
文摘In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte.Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework.
基金Supported by the National Natural Science Foundation of China under Grant No 11205024the Doctoral Scientific Fund Project of the Ministry of Education of China under Grant No 2012004112004
文摘The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter q. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor RAA and the parameter of q at intermediate jet energy.
基金Supported by the National Natural Science Foundation of Chinathe Doctoral Program Foundation of Institution of High Education the Research Foundation of State Key Laboratory of Coordination Chemistry,Nanjing University.
文摘The stabilities of the complexes of three pyridine-like ligands with M(II)(ATP)^(2-) and M(II)(M=Ni,Co)were studied by spectrophotometry and by comparing the stability constants of the ternary complexes with these of the binary complexes.A stacking interaction between the pyridine ring and the purine ring of ATP is indicated.The general existence of the stacking interaction encourages us to interpret the antitumor mechanism of a new class of antitumor drugs.
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 08B028 and 10A075)the Natural Science Foundation of Hunan Province, China (Grant No. 08jj6043)
文摘In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte- Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the ~eometry factor are the same.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204061,11374085,11104057,11274010 and 11204002the Anhui Provincial Natural Science Foundation under Grant No 1408085MA16+4 种基金the Anhui Provincial Candidates for Academic and Technical Leaders Foundation under Grant No 2015H052the Discipline Top-Notch Talents Foundationthe Excellent Young Talents Support Plan of Anhui Provincial Universitiesthe Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20113401110002the 211 Project of Anhui University,and the Personnel Department of Anhui Province
文摘We investigate the effects of pure Dzyaloshinskii Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states |φ±〉 = (|00) ± |11〉)/√2 and |ψ±〉 = (|01) ±|10〉)/√2, respectively. It is found that if the system is initially in the state p1(0) = |φ+〉〈φ+1, the entanglement can obtain its maximum when the DM interaction vector D is in the plane of XOZ and magnetic field B = By with the infinite time t, moreover the entanglement is independent of By and t when By is perpendicular to D. In addition, we obtain similar results when the system is initially in the states p2(0) = |φ-〉〈φ-| or p3 (0) = |ψ+〉〈ψ+1. However, we find that if the system is initially in the state P4 (0) = |ψ-〉〈ψ-l, the entanglement can obtain its maximum for infinite t, when the DM vector is in the plane ofYOZ, XOZ, or XOY, with the magnetic field parallel to X, Y, or Z axis, respectively. Moreover, when the axial B is perpendicular to D for the initial state p4(O), the negativity oscillates with time t and reaches a stable value, the larger the value of B is, the greater the stable value is, and the shorter the oscillation time of the negativity is. Thus we can adjust the direction and value of the external magnetic field to obtain the maximal entanglement, and avoid the adverse effects of external environment in some initial state. This is feasible within the cun'ent experimental technology.