Understanding the in situ stress state is crucial in many engineering problems and earth science research.The present article presents new insights into the interaction mechanism between the stress state and faults.In...Understanding the in situ stress state is crucial in many engineering problems and earth science research.The present article presents new insights into the interaction mechanism between the stress state and faults.In situ stresses can be influenced by various factors,one of the most important being the existence of faults.A fault could significantly affect the value and direction of the stress components.Reorientation and magnitude changes in stresses exist adjacent to faults and stress jumps/discontinuities across the fault.By contrast,the change in the stress state may lead to the transformation of faulting type and potential fault reactivation.Qualitative fault reactivation assessment using characteristic parameters under the current stress environment provides a method to assess the slip tendency of faults.The correlation between in situ stresses and fault properties enhances the ability to predict the fault slip tendency via stress measurements,which can be used to further refine the assessment of the fault reactivation risk.In the future,stress measurements at greater depths and long-term continuous real-time stress monitoring near/on key parts of faults will be essential.In addition,much attention needs to be paid to distinguishing the genetic mechanisms of abnormal stress states and the type and scale of stress variations and exploring the mechanisms of pre-faulting anomaly and fault reactivation.展开更多
It is common experience that our eyes do not perceive significant changes in color when we observe for long time an object continuously exposed to light. We always see plants to be green in summer until in autumn fact...It is common experience that our eyes do not perceive significant changes in color when we observe for long time an object continuously exposed to light. We always see plants to be green in summer until in autumn factors external to our vision, such as changes in the length of daylight and temperature, cause the break-down of chlorophyll and, in turn, spectacular changes in plant’s colors. Likewise, the photocurrent produced in solar panels or field effect transistors achieves a steady state magnitude shortly after the start of the illumination. The steady state photocurrent lasts until the illumination stops. Understanding the origin of the steady state response of a device or light harvesting (LH) system to illumination with electromagnetic (EM) waves motivates the research presented in this work. In our experiments, we used capacitors as LH systems and illuminated them with infrared (IR) light over an 80 hours time period. We investigated the interaction between light and matter by monitoring versus time the voltage output of the capacitors. By combining modeling and experimental observations, we concluded that the steady state voltage is established soon after the start of the illumination as the consequence of the law of conservation of energy. We also found that the magnitude of the voltage in the steady state depends on the power and period of the illuminating IR light, and on the capacitance of the capacitor. When light’s power undergoes fluctuations, also the voltage produced by the capacitor and the surface charge density on the capacitors do so. These findings suggest that the law of conservation of energy has a significant repercussion when light is absorbed by matter in the steady state, for example in the mechanism of vision in vertebrates. Likewise, these findings are true when light is emitted from matter, for example in the mechanism of formation of the Cosmic Microwave Background (CMB).展开更多
We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where ...We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.展开更多
The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio...Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.展开更多
The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combinati...The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.展开更多
Macroalgae have long been used as biological indicators of marine ecosystem health worldwide due to their ecological importance and sensitivity to environmental stress.A number of previous studies have utilized macroa...Macroalgae have long been used as biological indicators of marine ecosystem health worldwide due to their ecological importance and sensitivity to environmental stress.A number of previous studies have utilized macroalgal communities in monitoring surveys of environmental conditions.This study examined the characteristics and patterns of marine macroalgal communities in the Yellow Sea off the western coast of Korea.Macroalgae were analyzed for the number of species,biomass,and coverage ratio by macroalgal type.During the study period,82 macroalgal species(10 green algae,17 brown algae,and 55 red algae)were identified at the five study sites,with the highest number of species found at Gwanrido and Uido(both containing 41 species)and the lowest at Daeijakdo(27 species).The average biomass(via dry weight)was 98.63 g/m^(2),consisting of green algae(8.39 g/m^(2)),brown algae(35.08 g/m^(2)),and red algae(55.16 g/m^(2)).The dominant macroalgae species in terms of biomass were Corallina pilulifera,Sargassum thunbergii,and Ulva australis in the intertidal zones,and Botryocladia wrightii and Gelidium elegans in the subtidal zones.Richness,evenness,and diversity indices based on the biomass of abundant species were 5.08,0.65,and 2.30,respectively,over the entire study area.Based on the evaluation of the environmental states by the community indices,overall,the Ecological Evaluation Index of macroalgae communities in the study area was marked as“Good-Moderate”,but was determined as“ModerateLow”at several sites during summer.The results can be a direct approach in the assessment of coastal habitats in which anthropogenic as well as climate change influences persist.展开更多
Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expa...Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expansion scheme, the properties of the ground state and the anomalous quantum fluctuations are investigated in a strongly coupled electron-phonon system with special consideration of the electron-two-phonon interaction. The effective renormalization (ai) of the displacement of the squeezed phonons with the effect of the squeezed-coherent states of phonon and both the electron-displaced pbonon and the polaron-squeezed phonon correlations have been combined to obtain the anomalous quantum fluctuations for the corrections of the coherent state. Due to these non-adiabatic correlations, the effective displacement parameter ai is larger than the ordinary parameter ai (0) In comparison with the electron-one-phonon interaction (g) corrected as oig, we have found the electron-two-phonon interaction (gl) corrected as ai2gi is enhanced significantly. For this reason, the ground state energy (E(2)) contributed by the electron-two-phonon interaction is more negative than the single-phonon case (E01)) and the soliton solution is more stable. At the same time, the effects of the electron-two-phonon interaction greatly increase the polaron energy and the quantum fluctuations. Furthermore, in a deeper level, we have considered the effect of the polaron-squeezed phonon correlation (f-correlation). Since this correlation parameter f 〉 1, this effect will strengthen the electron-one and two-phonon interactions by fai9 and f2ai2g1, respectively. The final results show that the ground state energy and the polaron energy will appear more negative further and the quantum fluctuations will gain further improvement.展开更多
A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type. In the scheme a sequence of three-level -type atoms interacts with a cavity field,...A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type. In the scheme a sequence of three-level -type atoms interacts with a cavity field, displaced by a classical source, in a Raman manner. Then the atomic states are measured. By this way the cavity field may collapse onto a superposition of several coherent states, which exhibits strong squeezing. The scheme can also be used to prepare superpositions of many two-mode coherent states for two cavity fields. The coherent states in each mode are on a straight line. This is the first way for preparing multi-component entangled coherent states of this type in cavity QED.展开更多
Based on the coherent interaction and action–counteraction principles,we investigate the ground state properties for small polaron systems,the coherent-squeezed fluctuation correction,and the anomalous lattice quantu...Based on the coherent interaction and action–counteraction principles,we investigate the ground state properties for small polaron systems,the coherent-squeezed fluctuation correction,and the anomalous lattice quantum fluctuation,with the new variational generator containing correlated squeezed-coherent coupling and quantum entanglement.Noting tha t-2t is the T.B.A.energy,for the coherent interaction effect,we find the ground-state energy E_(0)to be-2.428t,in which the coherent squeezed fluctuation correction-A_(0)t is-0.463t(where t is the hopping integral,ωis the phonon frequency),with the electron–one-phonon coupling constant g=1 and the electron–two-phonon coupling constant g_(1)=-0.1.However,as a result of the action–counteraction effect,E_(0)is-2.788t,but-E_(0)t is-0.735t.As to the polaron binding energy(EP),for the coherent interaction effect,E_(P) is-1.38ω,but for the action–counteraction effect,E_(P) is-1.88ω.In particular,the electron–two-phonon interaction noticeably enlarges the coherent interaction and the coherent squeezed quantum fluctuation correction.By intervening with the quantum entanglement,the evolutions of the squeezed coherent state and the lattice quantum fluctuation begin to take control.At that time,we encounter a new quantum phase coherence phenomenon—the collapse and revival of inversion repeatedly for the coherent state in the entangled evolution.展开更多
Pangolins are currently considered the most endangered mammal species due to their high rank in local and international traffic. This species is protected in DRC and worldwide, unfortunately it is threatened by numero...Pangolins are currently considered the most endangered mammal species due to their high rank in local and international traffic. This species is protected in DRC and worldwide, unfortunately it is threatened by numerous human actions. The objective of this study is to identify the different reasons for which these animals are exploited, to provide information to determine from the opinions of the respondents the current state of the population from 2015 to today and to identify their hunting techniques by the local populations. We carried out surveys in the households of hunters, farmers and people practicing other professions in 12 villages, located within the RNT and surroundings areas. Two interview techniques were used: the individual interview and the participatory diagnostic technique. 175 people were interviewed individually. Nearly 97% of our respondents are motivated to consume pangolin as bush meat obtaining by hunting. The main reason for eating pangolin meat is 44% preference and 33% habit. The zone does not know the foreign solicitation of the exploitation of pangolins and its derivatives. The opinions of the population regarding the current state of pangolin in the Tayna Nature Reserve indicate that from 2015 to the present day the common pangolin “<em>Manis tricuspis</em>” has been abundant. Hunters use different hunting techniques, dominated by pickup for the <em>Manis tricuspis</em>, digging burrow, fire at the entrance of the burrow for <em>Manis gigantea</em> and the shotgun for the <em>Manis tetradactyla</em>.展开更多
The article is devoted to the struggle for identity which has been intensified in the Russian social media in 2014 both on interpretation of the historical past and on the up-to-date situation, especially, Crimea even...The article is devoted to the struggle for identity which has been intensified in the Russian social media in 2014 both on interpretation of the historical past and on the up-to-date situation, especially, Crimea events. Authors suppose that as a result social media become a means of manipulation more than independent space with rizhoma nature. In 2011-2012 social media were the space of struggle between authority and political opposition. Today space of social media is looking polarized regarding polarization of society in respect of political order and Putin political course.展开更多
Starting from the fact that urbanization increasingly aggravated and population constantly increased,the paper pointed out community landscape was the belt for human and environment interact,could well relieve pressur...Starting from the fact that urbanization increasingly aggravated and population constantly increased,the paper pointed out community landscape was the belt for human and environment interact,could well relieve pressure,ameliorate and improve life quality,create a harmonious life environment for citizens.It would introduce landscape furniture by dividing them into five types which were rest sketch,ornamental sketch,light sketch,demonstration sketch and service sketch.It also explained the connotation of interaction theory,and proposed that there were three steps during the interaction between human and landscape furniture by combining landscape furniture and interaction theory,that is,self interaction of landscape furniture,self interaction of subject and interaction between landscape furniture and subject.It emphasized that these three steps were the designing essence of interaction theory in landscape furniture.On this basis,it had discussed interaction design techniques for community landscape furniture from the angles of shape,color,material,expression of furniture connotation.The key was to better integrate community landscape furniture into residents' daily life,so as to provide a more reasonable and humanized design concept for designers.展开更多
A scheme is presented for preparing multi-atom entangled states based on the Raman atom-cavity-field interaction.After several degenerate Λ-type three-level atoms interact with an appropriately prepared single-mode c...A scheme is presented for preparing multi-atom entangled states based on the Raman atom-cavity-field interaction.After several degenerate Λ-type three-level atoms interact with an appropriately prepared single-mode cavity field through Raman coupling,a two-level atom,resonant with the cavity,is sent through the cavity and a Ramsey zone.The detection of the two-level atom leaves the Λ-type atoms in an entangled state.展开更多
The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the mac...The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.展开更多
Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equatio...Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equation has been fuzzily considered and the mechanism of interaction for coal aromatics and methane gas molecules has not been understood. Then these problems have been discussed in this paper applied the principle of statistical thermo mechanics and quantum chemistry as well as based on the numerical calculating of experiential data in quantum chemistry. Therefore, it is revealed by research results that the experience state equation for real methane gas in coal, which is put forward in this paper, is closer to actual situation and the interaction process for methane gas adsorption on the surface of coal aromatics can be formulated by Morse potential function. Furthermore it is most stable through this research that the structural mould for methane gas molecule adsorption on the surface of coal nuclear with one gas molecule on top of another aromatics in regular triangle cone has been understood, and it is a physical adsorption for methane gas adsorption with single layer molecule on the surface of coal nuclear.展开更多
The urban and community forestry movement in the United States has matured over the last 20 years from managing street trees, to understanding the benefits of trees in urban ecosystems, and now to managing urban green...The urban and community forestry movement in the United States has matured over the last 20 years from managing street trees, to understanding the benefits of trees in urban ecosystems, and now to managing urban green infrastructure. This paper introduced the history, development, and major accomplishments of the urban and community forestry movement, highlighted the economic, ecological, environmental, and social values of forests and trees to communities, and discussed issues and trends of the urban and community forestry program in the United States.展开更多
A new coordination polymer, {[Cd(OPY)(tdc)(HO)]·H2 O}n(OPY = 4,4?-(oxybis(4,1-phenylene))dipyridine, H2 tdc = thiophene-2,5-dicarboxylic acid), has been synthesized hydrothermally based on a V-shaped ligand OPY. ...A new coordination polymer, {[Cd(OPY)(tdc)(HO)]·H2 O}n(OPY = 4,4?-(oxybis(4,1-phenylene))dipyridine, H2 tdc = thiophene-2,5-dicarboxylic acid), has been synthesized hydrothermally based on a V-shaped ligand OPY. The structure was fully characterized by elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction analysis. In1, two OPY ligands and one water molecule acted as terminal ligands coordinating to Cdcation to form [Cd(OPY)HO]units, which are then linked by tdc2-ligands to generate a one-dimensional chain. Every two adjacent chains linked by extensive O–H···O hydrogen bonds constitute one-dimensional double-chains, and such chains are extended into two-dimensional layers via O–H···N hydrogen bonds. These layers are further connected to form a three-dimensional supramolecular architecture via π-π stacking interactions. In addition, the thermal stability and solid state fluorescence property of 1 were also investigated.展开更多
Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection an...Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.展开更多
As an important mechanism in multi-agent interaction,communication can make agents form complex team relationships rather than constitute a simple set of multiple independent agents.However,the existing communication ...As an important mechanism in multi-agent interaction,communication can make agents form complex team relationships rather than constitute a simple set of multiple independent agents.However,the existing communication schemes can bring much timing redundancy and irrelevant messages,which seriously affects their practical application.To solve this problem,this paper proposes a targeted multiagent communication algorithm based on state control(SCTC).The SCTC uses a gating mechanism based on state control to reduce the timing redundancy of communication between agents and determines the interaction relationship between agents and the importance weight of a communication message through a series connection of hard-and self-attention mechanisms,realizing targeted communication message processing.In addition,by minimizing the difference between the fusion message generated from a real communication message of each agent and a fusion message generated from the buffered message,the correctness of the final action choice of the agent is ensured.Our evaluation using a challenging set of Star Craft II benchmarks indicates that the SCTC can significantly improve the learning performance and reduce the communication overhead between agents,thus ensuring better cooperation between agents.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52204084)the Interdisciplinary Research Project for Young Teachers of USTB (the Fundamental Research Funds for the Central Universities,No.FRF-IDRY-20-013)+3 种基金the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program (No.QNXM20220009)the Fundamental Research Funds for the Central Universities (No.FRF-TP-20-041A1)the China Postdoctoral Science Foundation (No.2021M700388)the National Key R&D Program of China (Nos.2022YFC2905600 and 2022YFC3004601)。
文摘Understanding the in situ stress state is crucial in many engineering problems and earth science research.The present article presents new insights into the interaction mechanism between the stress state and faults.In situ stresses can be influenced by various factors,one of the most important being the existence of faults.A fault could significantly affect the value and direction of the stress components.Reorientation and magnitude changes in stresses exist adjacent to faults and stress jumps/discontinuities across the fault.By contrast,the change in the stress state may lead to the transformation of faulting type and potential fault reactivation.Qualitative fault reactivation assessment using characteristic parameters under the current stress environment provides a method to assess the slip tendency of faults.The correlation between in situ stresses and fault properties enhances the ability to predict the fault slip tendency via stress measurements,which can be used to further refine the assessment of the fault reactivation risk.In the future,stress measurements at greater depths and long-term continuous real-time stress monitoring near/on key parts of faults will be essential.In addition,much attention needs to be paid to distinguishing the genetic mechanisms of abnormal stress states and the type and scale of stress variations and exploring the mechanisms of pre-faulting anomaly and fault reactivation.
文摘It is common experience that our eyes do not perceive significant changes in color when we observe for long time an object continuously exposed to light. We always see plants to be green in summer until in autumn factors external to our vision, such as changes in the length of daylight and temperature, cause the break-down of chlorophyll and, in turn, spectacular changes in plant’s colors. Likewise, the photocurrent produced in solar panels or field effect transistors achieves a steady state magnitude shortly after the start of the illumination. The steady state photocurrent lasts until the illumination stops. Understanding the origin of the steady state response of a device or light harvesting (LH) system to illumination with electromagnetic (EM) waves motivates the research presented in this work. In our experiments, we used capacitors as LH systems and illuminated them with infrared (IR) light over an 80 hours time period. We investigated the interaction between light and matter by monitoring versus time the voltage output of the capacitors. By combining modeling and experimental observations, we concluded that the steady state voltage is established soon after the start of the illumination as the consequence of the law of conservation of energy. We also found that the magnitude of the voltage in the steady state depends on the power and period of the illuminating IR light, and on the capacitance of the capacitor. When light’s power undergoes fluctuations, also the voltage produced by the capacitor and the surface charge density on the capacitors do so. These findings suggest that the law of conservation of energy has a significant repercussion when light is absorbed by matter in the steady state, for example in the mechanism of vision in vertebrates. Likewise, these findings are true when light is emitted from matter, for example in the mechanism of formation of the Cosmic Microwave Background (CMB).
基金the National Natural Science Foun-dation of China(Grant No.12204311)the Jiangxi Natural Science Foundation(Grant No.20224BAB211025).
文摘We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
基金the National Natural Science Foundation of China(31860136,31560156)the Basic Scientific Research Service Fee Project of Colleges and Universities of Inner Mongolia Autonomous Regionthe Graduate Scientific Research Innovation Project of Inner Mongolia Autonomous Region(B20210158Z).
文摘Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.
文摘The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.
基金The Project“National Marine Ecosystem Comprehensive Survey”Funded by the Ministry of Oceans and Fisheries and the Korea Marine Environment Corporationthe“Development of Science and Technology-based Sea Area Use Impact Assessment Technology”Project Funded by the Ministry of Oceans and Fisheriesthe Fund of Korea Institute of Ocean Science and Technology under contract No.PEA0116。
文摘Macroalgae have long been used as biological indicators of marine ecosystem health worldwide due to their ecological importance and sensitivity to environmental stress.A number of previous studies have utilized macroalgal communities in monitoring surveys of environmental conditions.This study examined the characteristics and patterns of marine macroalgal communities in the Yellow Sea off the western coast of Korea.Macroalgae were analyzed for the number of species,biomass,and coverage ratio by macroalgal type.During the study period,82 macroalgal species(10 green algae,17 brown algae,and 55 red algae)were identified at the five study sites,with the highest number of species found at Gwanrido and Uido(both containing 41 species)and the lowest at Daeijakdo(27 species).The average biomass(via dry weight)was 98.63 g/m^(2),consisting of green algae(8.39 g/m^(2)),brown algae(35.08 g/m^(2)),and red algae(55.16 g/m^(2)).The dominant macroalgae species in terms of biomass were Corallina pilulifera,Sargassum thunbergii,and Ulva australis in the intertidal zones,and Botryocladia wrightii and Gelidium elegans in the subtidal zones.Richness,evenness,and diversity indices based on the biomass of abundant species were 5.08,0.65,and 2.30,respectively,over the entire study area.Based on the evaluation of the environmental states by the community indices,overall,the Ecological Evaluation Index of macroalgae communities in the study area was marked as“Good-Moderate”,but was determined as“ModerateLow”at several sites during summer.The results can be a direct approach in the assessment of coastal habitats in which anthropogenic as well as climate change influences persist.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574163)
文摘Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expansion scheme, the properties of the ground state and the anomalous quantum fluctuations are investigated in a strongly coupled electron-phonon system with special consideration of the electron-two-phonon interaction. The effective renormalization (ai) of the displacement of the squeezed phonons with the effect of the squeezed-coherent states of phonon and both the electron-displaced pbonon and the polaron-squeezed phonon correlations have been combined to obtain the anomalous quantum fluctuations for the corrections of the coherent state. Due to these non-adiabatic correlations, the effective displacement parameter ai is larger than the ordinary parameter ai (0) In comparison with the electron-one-phonon interaction (g) corrected as oig, we have found the electron-two-phonon interaction (gl) corrected as ai2gi is enhanced significantly. For this reason, the ground state energy (E(2)) contributed by the electron-two-phonon interaction is more negative than the single-phonon case (E01)) and the soliton solution is more stable. At the same time, the effects of the electron-two-phonon interaction greatly increase the polaron energy and the quantum fluctuations. Furthermore, in a deeper level, we have considered the effect of the polaron-squeezed phonon correlation (f-correlation). Since this correlation parameter f 〉 1, this effect will strengthen the electron-one and two-phonon interactions by fai9 and f2ai2g1, respectively. The final results show that the ground state energy and the polaron energy will appear more negative further and the quantum fluctuations will gain further improvement.
文摘A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type. In the scheme a sequence of three-level -type atoms interacts with a cavity field, displaced by a classical source, in a Raman manner. Then the atomic states are measured. By this way the cavity field may collapse onto a superposition of several coherent states, which exhibits strong squeezing. The scheme can also be used to prepare superpositions of many two-mode coherent states for two cavity fields. The coherent states in each mode are on a straight line. This is the first way for preparing multi-component entangled coherent states of this type in cavity QED.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574163)。
文摘Based on the coherent interaction and action–counteraction principles,we investigate the ground state properties for small polaron systems,the coherent-squeezed fluctuation correction,and the anomalous lattice quantum fluctuation,with the new variational generator containing correlated squeezed-coherent coupling and quantum entanglement.Noting tha t-2t is the T.B.A.energy,for the coherent interaction effect,we find the ground-state energy E_(0)to be-2.428t,in which the coherent squeezed fluctuation correction-A_(0)t is-0.463t(where t is the hopping integral,ωis the phonon frequency),with the electron–one-phonon coupling constant g=1 and the electron–two-phonon coupling constant g_(1)=-0.1.However,as a result of the action–counteraction effect,E_(0)is-2.788t,but-E_(0)t is-0.735t.As to the polaron binding energy(EP),for the coherent interaction effect,E_(P) is-1.38ω,but for the action–counteraction effect,E_(P) is-1.88ω.In particular,the electron–two-phonon interaction noticeably enlarges the coherent interaction and the coherent squeezed quantum fluctuation correction.By intervening with the quantum entanglement,the evolutions of the squeezed coherent state and the lattice quantum fluctuation begin to take control.At that time,we encounter a new quantum phase coherence phenomenon—the collapse and revival of inversion repeatedly for the coherent state in the entangled evolution.
文摘Pangolins are currently considered the most endangered mammal species due to their high rank in local and international traffic. This species is protected in DRC and worldwide, unfortunately it is threatened by numerous human actions. The objective of this study is to identify the different reasons for which these animals are exploited, to provide information to determine from the opinions of the respondents the current state of the population from 2015 to today and to identify their hunting techniques by the local populations. We carried out surveys in the households of hunters, farmers and people practicing other professions in 12 villages, located within the RNT and surroundings areas. Two interview techniques were used: the individual interview and the participatory diagnostic technique. 175 people were interviewed individually. Nearly 97% of our respondents are motivated to consume pangolin as bush meat obtaining by hunting. The main reason for eating pangolin meat is 44% preference and 33% habit. The zone does not know the foreign solicitation of the exploitation of pangolins and its derivatives. The opinions of the population regarding the current state of pangolin in the Tayna Nature Reserve indicate that from 2015 to the present day the common pangolin “<em>Manis tricuspis</em>” has been abundant. Hunters use different hunting techniques, dominated by pickup for the <em>Manis tricuspis</em>, digging burrow, fire at the entrance of the burrow for <em>Manis gigantea</em> and the shotgun for the <em>Manis tetradactyla</em>.
文摘The article is devoted to the struggle for identity which has been intensified in the Russian social media in 2014 both on interpretation of the historical past and on the up-to-date situation, especially, Crimea events. Authors suppose that as a result social media become a means of manipulation more than independent space with rizhoma nature. In 2011-2012 social media were the space of struggle between authority and political opposition. Today space of social media is looking polarized regarding polarization of society in respect of political order and Putin political course.
文摘Starting from the fact that urbanization increasingly aggravated and population constantly increased,the paper pointed out community landscape was the belt for human and environment interact,could well relieve pressure,ameliorate and improve life quality,create a harmonious life environment for citizens.It would introduce landscape furniture by dividing them into five types which were rest sketch,ornamental sketch,light sketch,demonstration sketch and service sketch.It also explained the connotation of interaction theory,and proposed that there were three steps during the interaction between human and landscape furniture by combining landscape furniture and interaction theory,that is,self interaction of landscape furniture,self interaction of subject and interaction between landscape furniture and subject.It emphasized that these three steps were the designing essence of interaction theory in landscape furniture.On this basis,it had discussed interaction design techniques for community landscape furniture from the angles of shape,color,material,expression of furniture connotation.The key was to better integrate community landscape furniture into residents' daily life,so as to provide a more reasonable and humanized design concept for designers.
基金Supported by the National Natural Science Foundation of China under Grant No.19474044.
文摘A scheme is presented for preparing multi-atom entangled states based on the Raman atom-cavity-field interaction.After several degenerate Λ-type three-level atoms interact with an appropriately prepared single-mode cavity field through Raman coupling,a two-level atom,resonant with the cavity,is sent through the cavity and a Ramsey zone.The detection of the two-level atom leaves the Λ-type atoms in an entangled state.
基金Supported by National Natural Science Foundation of China(Grant No.51505107)Natural Scientific Research Innovation Foundation in Harbin Institute of Technology of China(Grant No.HIT.NSRIF.2017029)
文摘The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.
文摘Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equation has been fuzzily considered and the mechanism of interaction for coal aromatics and methane gas molecules has not been understood. Then these problems have been discussed in this paper applied the principle of statistical thermo mechanics and quantum chemistry as well as based on the numerical calculating of experiential data in quantum chemistry. Therefore, it is revealed by research results that the experience state equation for real methane gas in coal, which is put forward in this paper, is closer to actual situation and the interaction process for methane gas adsorption on the surface of coal aromatics can be formulated by Morse potential function. Furthermore it is most stable through this research that the structural mould for methane gas molecule adsorption on the surface of coal nuclear with one gas molecule on top of another aromatics in regular triangle cone has been understood, and it is a physical adsorption for methane gas adsorption with single layer molecule on the surface of coal nuclear.
文摘The urban and community forestry movement in the United States has matured over the last 20 years from managing street trees, to understanding the benefits of trees in urban ecosystems, and now to managing urban green infrastructure. This paper introduced the history, development, and major accomplishments of the urban and community forestry movement, highlighted the economic, ecological, environmental, and social values of forests and trees to communities, and discussed issues and trends of the urban and community forestry program in the United States.
基金Supported by the National Natural Science Foundation of China(Nos.21361023 and 21461023)
文摘A new coordination polymer, {[Cd(OPY)(tdc)(HO)]·H2 O}n(OPY = 4,4?-(oxybis(4,1-phenylene))dipyridine, H2 tdc = thiophene-2,5-dicarboxylic acid), has been synthesized hydrothermally based on a V-shaped ligand OPY. The structure was fully characterized by elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction analysis. In1, two OPY ligands and one water molecule acted as terminal ligands coordinating to Cdcation to form [Cd(OPY)HO]units, which are then linked by tdc2-ligands to generate a one-dimensional chain. Every two adjacent chains linked by extensive O–H···O hydrogen bonds constitute one-dimensional double-chains, and such chains are extended into two-dimensional layers via O–H···N hydrogen bonds. These layers are further connected to form a three-dimensional supramolecular architecture via π-π stacking interactions. In addition, the thermal stability and solid state fluorescence property of 1 were also investigated.
基金supported by the National Program for Support of Top-notch Young Professionals,the National Basic Research Program of China (Grant Nos. 2012CB955202 and 2012CB417404)"Western Pacific Ocean System: Structure, Dynamics, and Consequences" of the Chinese Academy Sciences (WPOS+1 种基金 Grant No. XDA10010405)the National Natural Science Foundation of China (Grant No. 41176014)
文摘Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.
文摘As an important mechanism in multi-agent interaction,communication can make agents form complex team relationships rather than constitute a simple set of multiple independent agents.However,the existing communication schemes can bring much timing redundancy and irrelevant messages,which seriously affects their practical application.To solve this problem,this paper proposes a targeted multiagent communication algorithm based on state control(SCTC).The SCTC uses a gating mechanism based on state control to reduce the timing redundancy of communication between agents and determines the interaction relationship between agents and the importance weight of a communication message through a series connection of hard-and self-attention mechanisms,realizing targeted communication message processing.In addition,by minimizing the difference between the fusion message generated from a real communication message of each agent and a fusion message generated from the buffered message,the correctness of the final action choice of the agent is ensured.Our evaluation using a challenging set of Star Craft II benchmarks indicates that the SCTC can significantly improve the learning performance and reduce the communication overhead between agents,thus ensuring better cooperation between agents.