On the method of correlation analysis the poper begins with searching theSST (Sea Surface Temperature) and circulation features of some regions with close correlation to the discharge of the flood season (from June to...On the method of correlation analysis the poper begins with searching theSST (Sea Surface Temperature) and circulation features of some regions with close correlation to the discharge of the flood season (from June to September) in the upperreaches of the Changjiang (Yangtze) River, then discusses the characteristics of sea-airinteraction and the relations between the sea-air interaction and the discharge of theflood season,after that analyzes the possible mechanisms through which the main searegions affect atmospheric circulation, and of the influence of the circulation changes onthe discharge of the flood season.展开更多
ABSTRACT A high-resolution meteorological dataset(≤10 km)over the Tibetan Plateau(TP)is the foundation for investigating and predicting the weather and climate over Asia.The TP Subregional Dynamical Downscaling(TPSDD...ABSTRACT A high-resolution meteorological dataset(≤10 km)over the Tibetan Plateau(TP)is the foundation for investigating and predicting the weather and climate over Asia.The TP Subregional Dynamical Downscaling(TPSDD)dataset is a newly developed high-spatial-temporal resolution gridded dataset for land‒air exchange pro-cesses and lower atmospheric structure studies over the whole TP region,taking the climate characteristics of each TP subregion into consideration.The dataset spans from 1981 to 2020,covering the TP with a temporal resolution of 2 hr and spatial resolution of 10 km.Meteorological elements of the dataset include near-surface land-air exchange parameters,such as downward/upward long-wave/shortwave radiation flux,sensible heat flux,latent heat flux,etc.In addition,the vertical distributions of 3-dimensional wind,temperature,humidity,and pressure from the surface to the lower stratosphere are also included.Independent evaluations were con-ducted to verify the performance of the TPSDD dataset by compar-ing TPSDD/reanalysis with surface and vertical observations through the calculation of statistical parameters.The results demonstrate the accuracy and superiority of this dataset against reanalysis data,which provides great potential for future climate change research.展开更多
文摘On the method of correlation analysis the poper begins with searching theSST (Sea Surface Temperature) and circulation features of some regions with close correlation to the discharge of the flood season (from June to September) in the upperreaches of the Changjiang (Yangtze) River, then discusses the characteristics of sea-airinteraction and the relations between the sea-air interaction and the discharge of theflood season,after that analyzes the possible mechanisms through which the main searegions affect atmospheric circulation, and of the influence of the circulation changes onthe discharge of the flood season.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0105)the National key Research and Development Program(2022YFC2807203,2022YFC3702001-03)+1 种基金Natural Science Foundation of China(Grant No.41830968)Key Project of the Institute of Atmospheric Physics,Chinese Academy of Sciences.
文摘ABSTRACT A high-resolution meteorological dataset(≤10 km)over the Tibetan Plateau(TP)is the foundation for investigating and predicting the weather and climate over Asia.The TP Subregional Dynamical Downscaling(TPSDD)dataset is a newly developed high-spatial-temporal resolution gridded dataset for land‒air exchange pro-cesses and lower atmospheric structure studies over the whole TP region,taking the climate characteristics of each TP subregion into consideration.The dataset spans from 1981 to 2020,covering the TP with a temporal resolution of 2 hr and spatial resolution of 10 km.Meteorological elements of the dataset include near-surface land-air exchange parameters,such as downward/upward long-wave/shortwave radiation flux,sensible heat flux,latent heat flux,etc.In addition,the vertical distributions of 3-dimensional wind,temperature,humidity,and pressure from the surface to the lower stratosphere are also included.Independent evaluations were con-ducted to verify the performance of the TPSDD dataset by compar-ing TPSDD/reanalysis with surface and vertical observations through the calculation of statistical parameters.The results demonstrate the accuracy and superiority of this dataset against reanalysis data,which provides great potential for future climate change research.